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Abstract

Quadrangulation of given triangle meshes receives lots of attention in ongoing
research. High potential is expected in closing the gap between manual and
automatic techniques.

This thesis analyzes the parameterization based mixed-integer quadrangu-
lation method and proposes an extension allowing subsequent local updates.
These form the core of new quad meshing tools enabling an interactive work-
flow based on an initial automatic solution.
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Chapter 1

Introduction

Polygonal meshes are the representation of choice for geometric objects in
numerous applications. Most common in large fields of geometry processing
is the use of triangular meshes, for which a vast number of algorithms has
been created. In 3D rendering, a majority of techniques as well as dedicated
hardware are based on triangles. Among other properties, triangles are pop-
ular due to their simplicity and the fact that any kind of polygon can easily
be split into triangles.

Quadrilateral Meshes However, in some domains meshes consisting en-
tirely of quadrilaterals (quads) are preferred. One central reason for this
is that they allow for better alignment to the structure of the object they
represent.

More specifically, the local shape of a surface naturally incorporates two
main directions of curvature (the principal curvature directions) which are

(a) (b) (c) (d)

Figure 1.1: Different representations of the same object. (a)
shows an uniformly tesselated triangle mesh. (b) is a decimated
version of (a). (c) shows an aligned quadrangulation and (d)
is a subdivided version of (c)
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2 Chapter 1. Introduction

always orthogonal to each other. A quad mesh can be aligned to these direc-
tions in such a way that following a straight path of edges means following
the directions of e.g. maximal curvature. Doing the same with triangles
only determines meaningful orientation for two edges per triangle, leaving an
unnecessary degree of freedom for the third one (cf. [Bom+12] p. 3).

Quadrangulation Nevertheless, in practice most models exist in a trian-
gular representation. This is either due to the use of triangle based sculpting
tools or because they have been obtained by triangulating a point cloud
scanned from a real object. As manually creating a corresponding quad
mesh is a time-consuming and difficult task, automatic quadrangulation of
input triangle meshes is a highly demanded feature. One of today’s state-of-
the-art techniques for this task is the mixed-integer quadrangulation pipeline
introduced by Bommes et al. in [BZK09].

Depending on the intended application though, quality criteria of the
resulting quad mesh are diverse. Some are even subjective to the respective
artists and cannot be formalized. Thus, in general a fully automatic triangle
to quad conversion will not be able to entirely satisfy all requirements and
manual adjustments will always play a role (cf. [Bom12] p. 18).

Local Quad Remeshing Although the existing mixed-integer method al-
lows some subsequent user interactions, these provide no immediate visual
feedback since the entire algorithm has to be started again to see the effects.
For high-resolution models this may take at least a few minutes and is due
to the fact that each change has global impact on the final result.

This situation calls for new methods that allow more direct interaction.
A promising approach is to (after computing an initial global solution) re-
strict the effect of such operations to a local region while keeping the rest
of the mesh fixed. Since the local computation takes significantly less time,
it is possible to provide fast feedback to the user. We call this approach
local remeshing.

Contributions This thesis will give a first impression if and to which ex-
tent local quad remeshing is a way to establish an interactive workflow for
quadrangulating given triangle meshes. For this purpose, the existing mixed-
integer method is analyzed and then extended to support local updates.
Based on that, an exemplary interactive tool is created and evaluated with
respect to mesh quality, performance and integration into the overall process.
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Thesis Structure The remaining part of chapter 1 gives some additional
introduction into the general field of quad meshing by describing two common
applications (Section 1.1) and summarizing the most important quality crite-
ria (Section 1.2). In Section 1.3 a brief overview of different quadrangulation
methods as well as other interactive approaches is given.

Chapter 2 is dedicated to the existing mixed-integer quadrangulation
pipeline while Chapter 3 explains the modifications that are necessary to im-
plement local remeshing. In its last section, a specific interactive UI metaphor
exploiting local remeshing is introduced.

Finally, chapter 4 gives an overview over the achieved results and evalu-
ates the merit of the new tool. Problems of the current approach are illumi-
nated, which leads to multiple emerging research questions.

1.1 Applications

The advantages of high-quality quad meshes are exploited in various fields of
application. Following [Bom12], character animation and physical simulation
provide two popular examples. Despite their differences, both of them often
use coarse quad meshes as control cages for either subdivision surfaces or
continuous representations such as NURBS. Since the shape of these control
cages directly defines the final result, the quality of the quad mesh is of great
importance.

Character Animation When designing smooth objects like animatable
characters, it is common practice to model a coarse quad mesh and then
apply a subdivision scheme (e.g. Catmull-Clark [CC78]) to obtain a more
densely tessellated representation (cf. [Bom12] p. 17f). On the one hand,
this brings the advantage of being able to arbitrarily switch between different
levels of subdivision during the process. On the other hand, the quad mesh
can be aligned to the anticipated stretching directions in animation to reduce
artifacts.

If using texture or displacement maps, it is possible to lead the inevitable
distortion of these maps into a desired direction. When for example designing
a human arm, the edge flow is chosen to form individual loops around it
as well as uninterrupted lines from shoulder to wrist. In addition, a higher
density of loops can be chosen around the elbow to still guarantee a sufficient
mesh resolution if the arm is bent. For this purpose, explicit control over the
resulting quad mesh is of great use to the designer.

Artists refer to (manually or automatically) converting a model from any
other kind of representation into a quad mesh as the retopology task.
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Physical Simulation In many cases, the use of quad meshes also benefits
simulations like finite element analysis.

If used as discretization of a continuous surface, a badly tessellated mesh
can have a large negative influence on the stability of a simulation. So quad
meshes optimized for individual element quality (see Section 1.2) are a popu-
lar choice to represent the subject of simulation. In contrast to the animation
example, capturing geometric details is not the only requirement for a quad
structure. Here, the mesh resolution directly controls the accuracy of a sim-
ulation. Thus, even in flat regions without any geometric features, a fine
tessellation is necessary. This however, can again be achieved by subdivision
schemes as used for animation. Sometimes adaptive refinement is used in
addition to obtain a more accurate result in some regions of the mesh.

In a similar way, quad meshes are used as control cages for B-Splines which
provide a mathematically precise representation of continuous surfaces. As
in subdivision, a high quality control mesh is crucial for satisfying results (cf.
[Bom12] p. 19f).

1.2 Quality Criteria

Despite the fact that quality criteria of quad meshes differ from application
to application while some are even completely subjective to the artist, it
is still worth trying to formalize some of them. [BZK09], [Bom+12] and
[Bom12] give the following list of criteria which we can roughly divide into
the categories of local and global criteria.

Local Criteria

1. Individual Element Quality: Each quad is supposed to be as close
as possible to a square (or a rectangle, if anisotropy is desired). The
deviation from this ideal can be measured by the distance of the four
vertices to a common plane, the difference of each interior angle from
90➦ and the length difference between opposing edges.

2. Quad Orientation: Edges should follow the principal curvature direc-
tions if these are well defined. Different confidence metrics are possible
to determine how meaningful the curvature at a specific point is. Apart
from that, and depending on the application, even completely differ-
ent kinds of orientation fields can be used as a reference. A quality
measurement can be obtained by locally computing the deviation from
such a field.
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Global Criteria

3. Feature Alignment: Sharp feature lines of the input object have to
be consistently represented by a path of edges. Violating this criterion
has extremely bad influence on the visual appearance and supports
normal noise. A measurement is possible using the Hausdorff-distance,
which makes this a global criterion. Problems arise if the input mesh
itself is noisy.

4. Placement of Irregular Vertices: In most cases, vertices of va-
lence other than four (called singularities) are necessary to capture the
geometry of an object. Choosing their position, number and degree,
introduces a trade-off between using many of them to enable better
alignment and keeping the mesh as regular as possible.

5. Additional Requirements: As seen before, based on the particular
application many other criteria are possible which can or cannot be
rated objectively.

After all, even for criteria that can be formally measured, it is still a matter
of preference how to weight them against each other.

1.3 Related Work

During the past decade, numerous works on the topic of automatic or semi-
automatic quad mesh generation have been published. Since this section can
only give a glimpse on a subset of them, the reader is referred to [Bom+12]
for a comprehensive overview.

Generally, recent quadrangulation techniques can be split into the classes of
explicit and parameterization based approaches:

Explicit Approaches Often, authors strive to directly alter the given
topology of a mesh by turning adjacent triangles into a quads. In [Rem12]
for example, a minimum-cost-perfect-matching problem is solved to find ap-
propriate pairs of triangles. However, in general the result of this method is
a pure but unstructured quad mesh.

To incorporate alignment to the geometric shape of an object, the authors
of [MK04] trace lines on the surface of an object by following the two principal
curvature directions. Instead of modifying the original topology, a quad-
dominant mesh is obtained by creating vertices at intersections of these lines
and inserting edges along line segments.
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A combination of both concepts is used in [LKH08] where in a first step
vertices of the existing triangle mesh are relocated such that a subset of edges
follows the principal curvature directions. After that, the remaining diagonal
edges are removed which again leads to a quad-dominant mesh.

Parameterization Based Approaches More attention has recently been
paid to parameterization based approaches which all share the following pat-
tern: The input mesh is mapped to a grid in a 2D parameter domain which,
mapped back to the surface, determines the structure of a quad mesh. In
[BZK09] these methods are again divided into two subclasses:

High-level methods like [Don+06], [Ton+06], [Hua+08] and [Zha+10] first
start with a coarse layout of quadrangular patches which are then parameter-
ized individually. By defining transition functions at their boundaries, com-
patibility between adjacent patches is assured resulting in a globally smooth
parameterization. Since singularity positions are determined by the initial
patch layout, this strongly influences the final result and a lot of effort is put
into its computation (e.g. [CBK12]).

A different approach is taken by low-level methods such as [Ray+06]
and [KNP07] where the parameterization is guided by a global orientation
field that now dictates the placement of singularities. The recently most
cited work in this class is [BZK09] which this thesis is mainly based on.
In [Bom+13] this method is modified to provide reliable results even for
extremely coarse quadrangulations. Another extension is made in [MZ13]
which makes it possible to directly control the trade-off between element
distortion and the number of singularities.

For all parameterization based techniques, the last step consists of ex-
tracting the final quad mesh from the mere images of grid lines. A robust
way to do this is provided by [Ebk+13].

Interactive Approaches The field of interactive methods puts the user
into the center of the process. It reaches from tools supporting manual mesh
creation to semi-automatic techniques that are guided by the user in some
steps.

In [Tak+13] and [TPSH14] a sketch-based framework for manual remesh-
ing is proposed. It allows the user to draw a rough patch layout on the original
object and assists by suggesting autocompletion candidates. The automatic
quadrangulation of each patch can further be influenced by controlling the
placement of interior singularities and the number of subdivisions.

A multilevel approach is taken in [Tie+12]. On the first level, a coarse
mesh segmentation (by a so called Reeb atlas) is created semi-automatically
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by specifying extraordinary vertex positions and manipulating proposed patch
boundaries. After each resulting patch has been parameterized individually,
the user can choose between mapping a uniform grid or a different 2D quad-
rangulation of the parameter domain (connectivity texture) back onto the
surface. The proposed workflow allows to frequently switch between both
levels. In a final automatic step, conflicts between adjacent patches are re-
solved and patch boundaries are stitched together.

Both interactive methods initially require a substantial amount of effort be-
fore any outcome can be obtained. In contrast to this, our approach aims
to provide a complete relaxed integer grid map [Ebk+13] at any time along
the process by starting with an automatically obtained solution which is
subsequently altered by the user.
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Chapter 2

Mixed-Integer Quadrangulation

This chapter describes the mixed-integer quadrangulation (MIQ) method in-
troduced by Bommes et al. It first briefly summarizes the overall idea and
then gives detailed explanations focusing on the parts that are relevant to
this work. Where not stated otherwise, the contents of this chapter are
based on the original publication [BZK09] as well as on the corresponding
implementation.

Parameterizations The goal of this method is to obtain a 2D parameter-
ization of a given 3D triangle mesh which can then be used to extract a quad
mesh.

A parameterization F is a mapping from a parameter domain Ω ⊆ R
2

to a surface S embedded in R
3. Often, not the function F itself but its

inverse f := F−1 is regarded. In the case of a discrete triangle mesh M =
(V,E, T ), f usually is a piecewise linear function that maps each vertex

Figure 2.1: The function F maps from the 2D parameter
domain (left) to the 3D mesh (right). The other way around,
its inverse f maps each point (x, y, z)T ∈ S on the surface to
a parameter value (u, v)T ∈ Ω.

9
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v ∈ V to a position (u, v)T ∈ Ω in the parameter domain. An intuitive way
of understanding this is to see it as an unfolding of the mesh to a flat surface
(see fig. 2.1).

The Cartesian grid, i.e. the set of points in R
2 for which at least one of

the parameters u, v is an integer, is called the parameter grid. Its individual
lines are called integer-iso-parameter lines.

We are looking for a function f such that these parameter lines mapped
back to the surface form a network with quad mesh topology. Points in which
multiple iso lines meet, i.e. u and v are both integers, are intended to be
vertices of this quad mesh. The process of obtaining such a parameterization
and extracting a quad mesh is split into multiple steps forming a pipeline.

As pipeline input, we regard a triangle mesh that is already equipped with
some directional information in important feature regions. Such information
consists of directional vectors assigned to a subset of triangles. These direc-
tions will be used as guidance for the edge flow of the eventual quad mesh. It
is of great importance for the success of this method to only use a sparse set
of constraints. This way, there are enough degrees of freedom left to adjust
the solution in non-feature regions.

The MIQ pipeline consists of the following steps:

1. Computing a Smooth Cross Field In the first step, these directional
guidances have to be propagated over the entire mesh in a reasonable way.
Consequently, a direction is now assigned to each face. In constrained trian-
gles, these directions exactly match the already given ones, whereas in free
faces they are chosen to interpolate the constraints as smooth as possible.

Since the intended result is a quad mesh, directions should be indifferent
to rotations by 90➦. Thus, the directional vectors are extended to crosses
living in the tangent plane of the respective triangle. Each cross has a single

Figure 2.2: Steps of the MIQ Pipeline: (1) Computing a
smooth cross field. (2) Cutting the mesh open. (3) Computing
a global parameterization. (4) Extracting the quad mesh.
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degree of freedom (its rotation in the tangent plane) and is invariant under
rotations by a multiple of 90➦.

The resulting smooth cross field is used as input for the next steps. An
important property is that the singularities (see Section 2.1) of this cross
field already determine the position and degree the irregular vertices of the
quad mesh.

2. Cutting the Mesh To be able to unfold the mesh into a 2D parameter
domain, it has to be topologically equivalent to a disk. This is achieved by
cutting the mesh open along paths of edges. Depending on the genus of the
object, a certain number of cuts is necessary. In addition, cuts to singularities
have to be added.

3. Computing a Global Parameterization In this step, the eventual
parameterization is computed by assigning a pair of (u, v) coordinates to each
vertex. This way, the piecewise linear function f : R3 → R

2, (x, y, z)T 7→
(u, v)T is defined.

The (u, v) coordinates are chosen in such a way, that the directions of the
iso-parameter lines mapped back onto the mesh match the given cross field
directions from step 1 as well as possible.

4. Quad Mesh Extraction The fourth step of extracting the final quad
mesh is not covered by this work. The problem of generating a valid quad
mesh even from degenerated parameterizations including numerical inaccu-
racies has been successfully solved in [Ebk+13].

In the following sections, steps 1-3 are explained in more detail with respect
to their relevance for our changes in Chapter 3.

2.1 Computing a Smooth Cross Field

This section explains in detail, how a smooth cross field is computed based
on some sparse directional constraints.

Problem Setting For each triangle ti we want to obtain the rotation of its
cross which is expressed by a single angle θi. This angle is measured between
a reference vector and the main axis of the cross. The reference vector can
be chosen arbitrarily but fixed for each triangle, e.g. as the direction of one
of its edges. The other three axis of the cross are obtained by iteratively
rotating the main axis by 90➦. (See figure 2.4)
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(a)

Figure 2.3

Figure 2.4: (a) Reference direction (green), main axis (red)
and rotations by 90➦ (red, dashed) of a cross. (b) Per-
fectly aligned crosses in neighboring triangles with period jump
pij = 1. (Figure adapted from [BZK09])

Smoothness Energy Now, an energy is formulated which measures the
deviation between two crosses in neighboring triangles ti and tj. Because
their angles θi and θj are measured with respect to different reference edges
and the crosses are defined in different planes, they first have to be trans-
formed to the same coordinate system. This is done by adding an angle
κij which is obtained by unfolding the pair of triangles into a common plane
and then taking the angle difference between their respective reference edges.
Thus, θi + κij − θj measures the deviation between the two main axis.

Furthermore, to compensate rotations by multiples of 90➦, an integer vari-
able pij, called period jump, is introduced. It tells how many of these rotations
have to be applied to the cross in ti to match the one in tj as well as possible.

Altogether, the energy between two neighboring crosses can be expressed
as

θi + κij +
π

2
pij − θj.

By summing up the squared energies over the entire mesh, a global
smoothness energy is obtained:

Esmooth =
∑

eij∈E

(θi + κij +
π

2
pij − θj)

2

When setting up the equation system, κij will be fixed real values per edge,
pij will be free integer variables per edge and θi, θj free real variables per
face.
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Minimizing the Energy Since we want to make the resulting cross field
as smooth as possible, this energy has to be minimized. Because Esmooth

is a positive quadratic function, its minimizer can be found by setting its
gradient to zero:

∇Esmooth =















...
δEsmooth

δθk
...

δEsmooth

δpij
...















=














...
∑

ekj∈N(tk)

2(θk + κkj +
π

2
pkj − θj)

...

π(θi + κij +
π

2
pij − θj)

...














!
= 0

The adaptive greedy solver described in section 2.4 can be used to get a

good approximation of the solution. To do so, ∇Esmooth
!
= 0 is written as

the linear system Qx
!
= 0 with x being the result vector (. . . θk . . . pij . . . 1)

T .
Since the coefficient matrix Q is symmetric positive definite, we can instead
regard its factorization Q = BTB and set up the more intuitive matrix B.
Each column of B corresponds to an element of x and each row to an edge
eij. Filling each row with the coefficients of θi + κij +

π
2
pij − θj gives us

BTB = Q. So we can compute Q and pass it to the solver.
Furthermore we set up a matrix C which allows us to encode a set of

linear constraints to the variables of the system. The solver guarantees that
Cx = 0 is always true. So for all cross field angles which are already given,
and thus have to stay fixed, we add a row to C setting the k-th column to 1
and the last column to −θk.

(a) (b) (c)

Figure 2.5: (a) A subset of faces is equipped with directional
constraints. (b) The discrete Voronoi cells of constrained tri-
angles are used to eliminate redundant degrees of freedom. (c)
The final cross field interpolates the given directions smoothly.
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Removing Redundant Degrees of Freedom Up to now, infinitely many
solutions are possible. To demonstrate this, we pick an arbitrary triangle tk
for which an optimal θk has been computed. We can now rotate θk by an
arbitrary multiple of 90➦ and compensate the rotation by adjusting the period
jumps of the three incident edges without changing the total energy.

The solution can be made unique by the following strategy. Each fixed
triangle is chosen to be the root of a dual spanning tree. We let these trees
grow such that each triangle is contained in exactly one tree and is connected
to its root node on a shortest path.

The resulting forest of spanning trees corresponds to a discrete Voronoi
diagram (fig. 2.6b) of the constrained faces. According to [BZK09] we can
now fix the period jump of each primal edge of the Dijkstra forest to an
arbitrary value, which leaves us with exactly one minimal solution without
changing its energy. The respective constraints are also added to the matrix
C.

After the solver finished its job, the optimal rotation is applied to all
crosses.

Singularities An important property of this approach is that it already
provides us with the position and degree of singularities. For this reason, the
cross field index of a vertex v is defined as

I(v) = I0(v) +
∑

eij∈N(v)

pij

4
. (2.1)

Here, I0(v) is the base index which is a constant integer determined by
the angles κij around v, and is further explained in [Ray+08]. It is important
to consistently sum up the period jumps in a clockwise manner, since they
are antisymmetric, i.e. pij = −pji.

(a) (b) (c) (d)

Figure 2.6: Singularities of index 1
4 (a) and −1

4 (b) which are
placed in geometrically meaningful locations (c). They later
correspond to vertices of degree 3 and 5 (d).
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(a) (b) (c) (d)

Figure 2.7: (a) A genus one object with some singularities.
(b) The original cut graph used to achieve disk topology. (c)
The reduced cut graph after removing open paths. (d) The
final cut graph connecting all singularities.

Vertices with an index other than zero are called singularities. At a
singularity it is not possible to align a regular quad mesh, therefore these
will later correspond to irregular vertices. More specifically, a singularity of
index I will result in a quad mesh vertex of valence −4I + 4.

2.2 Cutting the Mesh Open

In this chapter the computation of a valid cut graph is explained briefly.
More details are given in section 3.3.

The cut graph G = (V,Ecut) contains a subset of the mesh’s vertices and
edges V cut ⊆ V , Ecut ⊆ E. The mesh will be cut open along this graph when
it is being unfolded into the parameter domain. To allow a valid parameter-
ization, the cut graph has to fulfill two requirements:

1. After cutting, the mesh has to be topologically equivalent to a disk,
which is required to allow a planar unfolding at all.

2. All singularities have to be connected to the cut graph. This allows a
parameterization such that a number of iso-parameter lines other than
four can meet in such a point.

1. Disk Topology This property is established by picking a random face
as root and growing a dual spanning tree. Now all primal edges whose dual
is not contained in the tree already induce a valid cut graph. Growing the
spanning tree can be seen as iteratively gluing faces together while all others
remain cut.

Since the cut graph is now quite large (figure 2.7b), we can start stitching
faces back together along unnecessary paths. To do so, we iteratively remove
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each vertex from V cut that has only one incident edge in Ecut. The remaining
graph will be much smaller but is still sufficient to achieve disk topology.

In case of a genus zero object like a cube, the result is a single vertex.
On a torus (genus one) this cut graph consists of two circles along its main
axis. In general, an object of genus g requires 2g cuts.

2. Connecting Singularities In a second step, all singularities are it-
eratively connected to the existing graph. For each one, a simple Dijkstra
search is started and the shortest path to any vertex of the graph is added.

After cutting, vertices contained in V cut will have an instance on each side
of a cut. More specific, a vertex with n incident cut edges (n ≥ 1) has
n instances which may be mapped to different locations in the parameter
domain.

2.3 Computing a Global Parameterization

In this last step, we aim to find the eventual parameterization function
f : S ⊆ R

3 → Ω ⊆ R
2 which is aligned to the already computed cross

field as well as possible. In order to imply an actual quad mesh, some addi-
tional requirements have to be fulfilled as explained later.

Orientation Energy The piecewise linear function f is defined by assign-
ing a pair of (u, v) values to each vertex. Along a cut, each instance receives
its own (u, v) pair.

Similarly to section 2.1, we formulate an energy that describes how well
the alignment of a parameterization matches the given cross field. For this
purpose we split f into two scalar functions u and v with f = (u, v)T and
regard their gradients ∇u and ∇v. The gradient ∇u : R3 → R

3 maps a point
on the surface to the direction in which the parameter u increases maximally.
Locally, this gradient is perpendicular to the direction of a parameter line
mapped back onto the surface. The same holds for the other parameter v.

Figure 2.8: Local devia-
tion of the gradients ∇u,
∇v from the cross field di-
rections ut, vt.

Because the functions u, and v are both lin-
ear within a triangle, we can in practice define
them individually for each face using a local co-
ordinate system. This reduces the dimensions to
u, v : R2 → R and ∇u,∇v : R2 → R

2 respec-
tively.

Given normalized cross field directions ut and
vt for a single triangle, we can express the de-
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viation of the gradients from the cross field by
||∇u− ut|| and ||∇v − vt||. (See figure 2.8.)

To control the edge length of the resulting
cross field, an additional scaling parameter h is introduced. Again, we are
interested in the squared deviation which leads to the energy per triangle
defined as

Et = ||h∇u− ut||
2 + ||h∇v − vt||

2.

To obtain a global energy for the entire mesh, these values are summed
up while each one is weighted with its corresponding triangle area At:

Eorient =
∑

t∈T

EtAt

=
∑

t∈T

(
||h∇u− ut||

2 + ||h∇v − vt||
2
)
At

=
∑

t∈T

(
(h∇uu − utu)

2 + (h∇uv − utv)
2 + (h∇vu − vtu)

2 + (h∇vv − vtv)
2
)
At

Minimizing the Energy We are again dealing with a positive quadratic
function that can be minimized by setting its gradient to zero:

∇Eorient = 2h












...
hAt∇uu − Atutu

hAt∇uv − Atutv

hAt∇vu − Atvtu
hAt∇vv − Atvtv

...












!
= 0

Unfortunately, the unknowns in this system are the gradients ∇u and
∇v, but we want to obtain the functions u and v itself. Luckily, we can write
∇u, which is constant within a triangle, in dependency of the u values of its
three vertices u0, u1, u2:

∇u =
1

2At

2∑

i=0

e⊥i ui

Here, e⊥i is the edge vector opposite to vertex i rotated by 90➦ so that it
points into the triangle. Of course, the same works for ∇v. Inserting this
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into the above equation gives us:

∇Eorient = 2h












...
1
2
h
(
e⊥0uu0 + e⊥1uu1 + e⊥2uu2

)
− Atutu

1
2
h
(
e⊥0vu0 + e⊥1vu1 + e⊥2vu2

)
− Atutv

1
2
h
(
e⊥0uv0 + e⊥1uv1 + e⊥2uv2

)
− Atvtu

1
2
h
(
e⊥0vv0 + e⊥1vv1 + e⊥2vv2

)
− Atvtv

...












!
= 0

This linear system can again be written in matrix notation as Bx
!
= 0

with real variables ui, vi.

Singularities at Integer Locations If the system is solved with all un-
knowns being real numbers, no vertex is required to lie on an iso-parameter
line. For singularities this means the parameter grid mapped back to the
surface can not only form irregular vertices but also irregular faces (See fig-
ure 2.9a). To prevent this and create a quad-only mesh, singularities are
snapped to junctions of the parameter grid by requiring both its u and its
v coordinate to be integral. This way, a quad mesh with irregular vertices
instead of irregular faces is created.

Cut Compatibility As shown in figure 2.9b the parameterization on both
sides of a cut is not yet expected to match. In order to remove visible seams,
the relation between parameter values on both sides has to be constrained.
Formally, the mapping between the (u, v) coordinates on either sides is called
the transition function. Because the desired result is a quad structure, rota-
tions by a multiple of 90➦ as well as translations by full integers are allowed.
Thus, for each cut edge e = pq we set up the conditions

(u′

p, v
′

p) = Rotie90(up, vp) + (je, ke)

(u′

q, v
′

q) = Rotie90(uq, vq) + (je, ke). (2.2)

A transition function limited to these degrees of freedom is called a grid
automorphism [KNP07]. As described later, the number of rotations ie can
be precomputed. This leaves us with two additional integer variables je, ke
per cut edge that describe the translational part of the transition function.

Thus, we expand the matrix B by the appropriate number of columns, filling
all of them with zeros, since the actual values have no impact on the quality of
our solution. The result vector x is now of the form (. . . up, vp . . . je, ke . . . 1)

T

for vertices p and cut edges e.
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(a) (b) (c)

Figure 2.9: (a) A singularity not constrained to an integer
location. (b) Incompatible parameterizations on either sides
of a cut. (c) Parameterization with singularities on integer
positions and cut compatibility.

As done in the cross field computation, we also set up a constraint matrix
C for which the solver guarantees the equation Cx = 0 to hold. Per cut edge,
we add four rows representing equation 2.2.

Still, there are infinitely many solutions to the problem, as the image of the
mesh inside the parameter domain can be arbitrarily translated by integers
and one of four possible rotations can be chosen.

The translational issue can be solved by fixing a single vertex to an ar-
bitrary parameter value e.g. the origin. To introduce no change to the
parameterization energy, it is important to choose a singularity if possible.

Consistent Orientation As an additional pre-processing step before set-
ting up the problem matrices, the existing cross field is altered in order
to achieve consistent orientation. This means, the main axis of all crosses
roughly point into the same direction. More specific: the period jump be-
tween two neighboring triangles is zero. Only on cut edges, a period jump
other than zero is permitted, which is necessary to allow for rotations in the
transition function.

The algorithm establishing this property works as follows:

1. Pick an arbitrary triangle.

2. Set the period jump of all its edges to zero. Compensate this change
by rotating the neighboring crosses by multiples of 90➦.

3. Propagate this pattern in a breadth first manner. Stop at cut edges.

This method iteratively drags period jumps to the cut edges which solves
multiple problems:
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❼ In figure 2.8 it was not clear which axis of the cross had to be chosen
as ut and vt. Since crosses are now oriented consistently, we can choose
e.g. the main axis as uT and the one rotated by 90➦ to the left as vT .

❼ This also fixes the rotation of the entire mesh in the parameter domain
to the orientation of the first triangle we picked.

❼ The rotational part of the transition function i.e. the ie in equation 2.2
can now be computed by simply comparing the crosses main axis on
both sides of the cut.

We are now ready to finally assemble the matrices B and C and pass them to
the solver, which gives us the eventual parameterization function f defined
by a (u, v) coordinate for each vertex instance. We are also provided with
values for je, ke which can be ignored in our case.

2.4 The Mixed-Integer Solver

In this section, the mixed-integer solver used in 2.1 and 2.3 will be described
briefly with respect to the information that is used in the following chapter.

The solver, which was specifically designed to perform well in the context
of quadrangulation, was first presented in [BZK09]. For a full description
and some improvements see [BZK12]. Even more details and extensive back-
ground information is provided in [Bom12].

Problem Definition The task of the solver is to minimize a quadratic
energy function E : Rn × Z

m → R that depends on some real-valued as well
as some integer variables. In addition, some linear equality constraints of the
form CT

i x − di = 0 with Ci ∈ R
n+m and di ∈ R are given. As seen before,

E can be minimized by setting its gradient ∇E to zero and solving a linear
system.

Since, due to the integer variables, finding an optimal solution to this
problem is NP-hard [Flo95], it is approximated using an adaptive greedy
approach that gives good results in practice.

Greedy Rounding The main idea of the algorithm is to first treat all
unknowns as real variables and then iteratively round some of them to the
closest integer value.

Therefore, initially a continuous solution x0 ∈ R
n+m for the so called re-

laxed problem is computed. After that, from all variables that should become
integers, the one with the smallest rounding error |round(xj)− xj| is chosen
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and fixed to round(xj). Then, the remaining continuous system is updated
locally, i.e. all real variables that now introduce a residual above some er-
ror bound ε are adapted via a Gauss-Seidel step. This is repeated until all
integer constraints are fulfilled.

In [BZK12], even better performance was achieved by rounding a set of
variables, which only have low influence on each other, simultaneously.

Linear Constraints For each given linear equality constraint, one real
variable of the system can be eliminated in a pre-processing step. However,
it is possible that some constraints are linear dependent. In this case no
additional information is given by the dependent constraint and it will be
ignored.

Although the solver produces very good solutions in most cases, in the next
chapter we can observe some issues that are based on its greedy strategy.

The existing quadrangulation pipeline described here as well as the adaptions
explained in chapter 3 use the open source C++ implementation CoMISo
available at [Com10].
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Chapter 3

Local Remeshing

This chapter is dedicated to a new method called local remeshing. After
giving some motivation and introducing the general idea of this approach,
the necessary modifications to the mixed-integer quadrangulation pipeline
are discussed in detail. Finally, an exemplary interactive tool which makes
use of the new technique is presented.

By construction of the MIQ pipeline, the quality of the resulting quad mesh
strongly relies on the initial set of directional constraints. In the current state
of the project, these are created by a simple heuristic. This heuristic uses
principal curvature directions, in regions where they stable enough, as cross
field constraints (cf. [BZK09]). The user can influence the resulting number
of constraints by setting a confidence threshold. Apart from this, many other
global approaches for feature detection are possible. More sophisticated ones
are discussed in [Ibi14].

After running the MIQ pipeline up to the parameterization step, the
resulting quad structure can be inspected by the user. As already seen in
the introduction, quality criteria are diverse which makes it likely that the
user is not satisfied and wishes to choose a different set of constraints. Now,
one option is to tweak some parameters and use the same mechanism a
second time. As an alternative to using automatically obtained constraints
again, certain manual user interactions are possible, all of which share the
same pattern: First, the existing set of constraints is manipulated and then
the entire parameterization pipeline is executed again to obtain an updated
result. As an example, we focus on two main kinds of operations:

Manual Feature Lines By drawing a line on the mesh, the cross field
angles of all affected triangles are set to a fixed value. Since the eventual
parameterization is only aligned to these directions in a least squares sense,

23
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they are called soft constraints.

If in addition, constraints are added to the parameterization system such
that the specified path is mapped exactly to an iso-parameter line, we speak
of hard constraints.

Index Constraints By constraining the sum of period jumps around a
certain vertex, it is possible to directly control its cross field index. In other
words, we can arbitrarily determine the position and degree of singular ver-
tices. This can be used to let the user drag existing singularities to new
locations or even merge multiple singularities of low degree to a single one of
higher degree and vice versa.

These and other operations proved to be quite powerful to manually improve
the resulting quad structure to the specific needs of an application. Due
to the fact that each change has global impact on the eventual parameter-
ization, providing any visual feedback to the user means running the entire
algorithm again from the very beginning. Unfortunately, this can take a sig-
nificant amount of time (e.g. more than a minute for a mesh with 300, 000
triangles), which makes it almost impossible to establish a reasonable work-
flow in practice.

This situation forms the basis for this thesis. A promising approach to make
the process of modifying a quadrangulation more interactive is provided by
local remeshing.

Local Remeshing As before, we assume that an initial global parameter-
ization has already been computed. Based on that, the central idea of local
remeshing is to select a region on the mesh and compute an updated param-
eterization only within this region. On the inside, arbitrary adjustments to
the constraints can be made using the operations described above. However,
for those parts of the mesh that are not contained within the region, the
existing parameterization stays fixed. Care has to be taken, that the local
result blends into the outside solution in a seamless way. See figure 3.1 for
an example.

Due to the smaller size of the problem, the local solution can be com-
puted in significantly less time, allowing for more direct visual feedback. In
addition, the local influence of an operation can help to make the result of
an user interaction more predictable.
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(a) (b) (c)

Figure 3.1: A local remeshing operation. (a) Full quadrangu-
lation before the operation. (b) Badly aligned edge flow below
the dragon’s spine. (c) The edge flow has been corrected solely
within the selected region.

3.1 Terminology

This section introduces some basic definitions and notations which will be
used throughout the rest of the thesis.

3.1.1 Regions

In the following we want to restrict the impact of algorithms to a local region
of a mesh. Thus, we need a precise definition of which parts of the mesh are
affected. Since we want to achieve a smooth transition to the rest of the
mesh, we also have to take a boundary ring around the region into account.

A region is chosen based on the input triangle mesh, not on the resulting quad
mesh. There are multiple reasons for this decision: 1) The mixed-integer
quadrangulation has to be applied again, which of course needs a triangle
mesh as input. 2) This work only interferes with the parameterization of the
triangle mesh and is independent of the final quad mesh extraction step. 3)
It is way more straightforward to implement.

We are given a 2-manifold triangle mesh M = (V,E, T,HE) that lets us
directly access its sets of vertices V , edges E and triangles T . To make some
formulations easier, we also assume a set HE containing two directed half-
edges per edge, which are oriented in counter-clockwise direction for each
triangle. More details about half-edge representations can be seen in [Ket99]
and [Bot+].
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(a) (b) (c)

Figure 3.2: The individual elements of a region. (a) Inner
faces are colored yellow, outer faces blue. (b) Edges are cate-
gorized into inner edges (orange), boundary edges (black) and
outer edges (blue). (c) Region vertices are depicted as black
dots, inner half-edges are shown in orange, outer half-edges in
blue.

Definition A region R = (VR, ER, TR, HER) with VR ⊆ V,ER ⊆ E, TR ⊆
T and HER ⊆ HE, is uniquely determined by an arbitrary, non-empty
subset of triangles that we want to modify. We call it the set of inner faces
T inner
R ⊆ TR.

Based on this, we define the set of region vertices :

VR := {v ∈ V | v incident to t ∈ T inner
R }

Outer faces form a ring around the inner region. This ring will be part of
our computation but is kept fixed in order to make the local solution blend
smoothly into the outside.

T outer
R := {t ∈ T | t incident to v ∈ VR and t 6∈ T inner

R }

Edges are split into three sets. Those that lie in the inner part of the region,
those on its boundary and some outer edges that will also stay fixed.

E inner
R := {e ∈ E | e incident to t1, t2 ∈ T inner

R , t1 6= t2}

Eouter
R := {e ∈ E | e incident to t1, t2 ∈ T outer

R , t1 6= t2}

E
boundary
R

:= {e ∈ E | e incident to t ∈ T inner
R , e 6∈ E inner

R , e 6∈ Eouter
R }

We choose all half-edges that point to a region vertex to also be part of the
region. Since each half-edge is incident to exactly one face, we can split them
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(a) (b) (c) (d) (e)

Figure 3.3: A region that (a) touches a mesh boundary, (b)
forms a loop, (c) is of higher genus, (d) consists of multiple
components (note that the left half of the region is connected
and only the right part forms an individual component) and
(d) covers an entire mesh component.

into sets of inner and outer half-edges as we did with the faces.

HE inner
R := {he ∈ HE | he points to v ∈ VR and he incident to t ∈ T inner

R }

HEouter
R := {he ∈ HE | he points to v ∈ VR and he incident to t ∈ T outer

R }

Note that all these sets are pairwise disjoint. Finally, we combine them to:

ER := E inner
R ∪̇ E

boundary
R

∪̇ Eouter
R

TR := T inner
R ∪̇ T outer

R

HER := HE inner
R ∪̇ HEouter

R

Figure 3.2 shows an example region and highlights its different elements.
Since the initial set of inner faces can be chosen quite liberally, there are
some special cases worth mentioning:

❼ The region can touch a mesh boundary. In this case, the ring of outer
faces is interrupted.

❼ Extending R to a a closed surface can give us an object of arbitrary
genus. An upper bound is given by the genus ofM.

❼ A region that e.g. forms a loop around a cylindrical object has multiple
boundary rings. On arbitrary surfaces, regions can have an arbitrary
number of holes.

❼ The set of inner faces is not required to be connected. In fact, a region
can consist of multiple components. We define a region component by
the property that all of its vertices can be pairwise connected by a path
of edges in E inner

R ∪ E
boundary
R

.
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❼ If the region equals a complete mesh component, there are no outer
faces for this component. The region may even contain the entire mesh,
which gives us T inner

R = T . In this case we want our local algorithm to
behave exactly like the original global version.

Note that algorithms described in the following chapters have to handle all
cases which are allowed by the above definition. For the methods presented
here, nothing of the remaining part ofM has to be regarded, which makes
them strictly local.

Disambiguation Edges can be called boundary in two different contexts.
We speak of a mesh boundary if the edge has only one incident face in M.
In contrast to this, a region boundary separates inner from outer faces in R.
Also, one must not confuse a mesh component, which is connected inM, and
a region component, which is connected (as described above) in R.

3.1.2 Index Mapping

In the original mixed-integer quadrangulation, as explained in the previous
chapter, we assumed that each face, edge and half-edge has a unique index.
We directly used these indices to address rows and columns of the matrices
we set up. Since now we want to set up smaller matrices for the local region
only, we cannot use these global indices anymore.

Hence, we introduce new local indices for the elements of R. This is done
by the following bijective maps:

idxE : ER → {0, 1, ..., |ER| − 1}

idxT : TR → {0, 1, ..., |TR| − 1}

idxHE : HER → {0, 1, ..., |HER| − 1}

An index mapping for vertices is omitted because it will not be used in the
following.

3.2 Recomputing a Local Cross Field

To locally update the existing cross field inside a region R, we set up an
equation system as in section 2.1 which solely contains elements of R. To
minimize the energy Esmooth, we again assemble the system matrix B and
the constraint matrix C. This time, we use one real variable per face in FR

to determine cross field angles and one integer variable per edge in ER for
period jumps.
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(a) (b) (c)

Figure 3.4: Local Cross Field Computation. (a) Existing
directions of outer edges are fixed while some new directions
have been added to the inner region. (b) The discrete Voronoi
diagram of constrained faces is created. (c) The new cross field
smoothly interpolates the fixed region boundary as well as the
inner constraints.

Smooth Transition In contrast to before, we now have to establish a
smooth transition from the new cross field to the old one outside the region.
For this reason, we keep the outer ring of faces around the region fixed, i.e.
we constrain all angles of faces ti ∈ T outer

R to their existing value θi. To do
so, for each one, we add a row to C setting the idxT (ti)-th column to 1 and
the last column to −θi.

Since the energy inside the region is minimized, the interior crosses will
smoothly approach this fixed outer ring. If in some places the region touches
a mesh boundary, no outer faces exist and thus no additional constraints
have to be fulfilled.

Period jumps are treated in a similar way. On outer edges, the period
jump will always stay fixed since the angle of both incident faces is also fixed.
Thus, we can constrain them to their current value as done for the outer faces.
Boundary edges eij ∈ E

boundary
R

however have to stay free because the angle
of the incident inner face can change, which might have to be compensated
by pij.

The reason why period jumps of outer edges are part of the system in
the first place is that we want to allow the user to apply index constraints to
vertices on the region boundary. In this case, the sum of all incident edges
has to be constrained, which includes outer edges.

While the outer elements of the region are always fixed exactly as explained
here, inner elements can be constrained arbitrarily for the purpose of the
particular operation.
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Ensuring One Constraint Per Mesh Component In case that the
region consists of an entire mesh component, there are no outer faces to be
constrained. If in addition no fixed angles in the interior are given, we have to
add an arbitrary constraint to prevent infinitely many equivalent solutions.

Reducing the Number of Variables As in the original algorithm, we
can get rid of unnecessary degrees of freedom by computing the discrete
Voronoi cells of constrained faces and fix period jumps along the individual
spanning trees to zero.

Now the local system will be given to the solver and the cross field inside the
region is updated according to the new solution.

(a) (b) (c)

Figure 3.5: (a) Adding some constraints to the inner region
creates a pair of singularities. (b), (c) Locally updating the
cross field without changing any constraints leads to a different
solution due to greedy rounding.

Observations Depending on the constraints that we add to the inner re-
gion, the amount and placement of singularities changes. As expected, sin-
gularities appear and vanish pairwise such that the sum of cross field indices
within the region stays constant (figure 3.5a). Yet, this does not guarantee
that the resulting singularity configuration allows for a valid parameteriza-
tion. More details on this problem are given in section 4.2.

A rather surprising situation is shown in figure 3.5b and c. Here, the initial
global solution provides us with two singularities of degree three (orange) and
one of degree five (blue) within the visible image section. These are due to the
local geometry since no constraints were involved. Now, we choose a small
region and locally recompute the cross field without adding any constraints.
The expected result is the exact same cross field as before. But instead
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it does change and two singularities cancel out each other. However, this
behavior is plausible when regarding the greedy nature of the mixed-integer
solver (cf. section 2.4).

Period jumps are represented by integer variables which are successively
rounded during the solving process. When we keep the existing solution out-
side the region fixed but set up a new relaxed problem for the inside, we
might have created a situation that did not exist during the global solving
process. Thus, rounding integers inside the region is now based other contin-
uous solutions than before. Because of this, it is possible that a variable is
rounded to a different integer. This way the new local cross field can change
completely. In practice, this issue is observed quite frequently but did not
turn out to be a big problem for interactive situations.

3.3 Updating the Local Cut Graph

In this section, the existing cut graph is updated in order to allow a repa-
rameterization of the region R. Again, all of our actions are strictly local
and only effect elements of R.

Because initially the original parameterization pipeline was executed, we are
already provided with a global cut graph. As stated in section 2.2 it fulfills
two important requirements:

1. The mesh is cut open so that it is topologically equivalent to a disk.
2. All singularities lie on the cut graph.

While the point of property 1 is fairly intuitive, property 2 deserves some
further explanation. By definition, the cross field around a singularity p

cannot be aligned to a regular grid when mapped to the parameter domain.
Hence, a low-distortion parameterization does not seem possible. Adding a
cut to p solves this issue as the patch around p is torn open such that each
cross can be aligned to the directions of the parameter grid. An example
for a valence three singularity can be seen in fig 3.6. After adding a cut to
each singularity, all of them lie on the boundary of the parameter domain.
Because singularities will later be positioned at intersections of the grid, it is
now possible that, mapped back onto the surface, other than four parameter
lines meet at vertex p.

Before we start manipulating the cut graph, another important property has
to be investigated. As explained in section 2.3, consistent orientation is es-
tablished by setting period jumps to zero everywhere except on cut edges.
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(a) (b) (c)

Figure 3.6: (a) A singularity of degree three is connected to
the cut graph. (b) Opening the surrounding triangle patch by
an angle of 90➦ inside the parameter domain compensates the
valence defect of one. (c) Projected back to the surface, three
parameter lines meet at the vertex.

After that, each path segment of the cut graph is associated with a distinct
period jump which is equivalent to the rotational part of the transition func-
tion. This period jump does only change at singularities or branching points
of the graph and is otherwise constant along a path. This can be expressed
by the following formula which has to hold at every vertex v in order to allow
a valid parameterization:




∑

eij∈N(v)

pij





︸ ︷︷ ︸

Sum of period jumps

− 4 I(v)

︸ ︷︷ ︸

”Valence defect”

+ 4 I0(v)

︸ ︷︷ ︸

Base index

= 0 (3.1)

Note, that this is just a rearranged version of the cross field index defini-
tion (2.1). For singularities, 4I(v) equals the valence defect in the resulting
quad mesh. Following [Bom12], the valence defect of a quad mesh vertex q

is defined as the deviation from regular valence, i.e. 4 − val(q). I0(v) again
represents the base index. Since period jumps are antisymmetric, it is im-
portant to consistently sum them up in clockwise direction. For an intuitive
understanding, it is sufficient to only regard the sum of period jumps and the
vertex index: At a regular vertex, 4I(v) is zero and the equation is fulfilled if
the incoming and outgoing period jumps sum up to zero. If e.g. the vertex is
a singularity of degree three, the sum of incoming has to exceed the outgoing
period jumps by one.
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(a)

Figure 3.7: Singularities of degree two (dark yellow), three
(orange), five (dark blue), and seven (light blue) are connected
by a cut graph. Equation 3.1 holds at every vertex. Black
arrows show the orientation of period jumps, which are anti-
symmetric and have to be summed up clockwise.

Problem Setting In the first step of our local recomputation the cross
field has been changed. This means, that singularities have changed their
location and degree, have been deleted or new ones have been created. Now,
new singularities have to be connected to the cut graph, while paths to old
singularities can be removed. All along, we have to make sure that our
changed cut graph still satisfies all of the above requirements. In addition,
another global aspect has to be taken care of. Original cut paths that in-
tersect the region must not be disconnected since they could be necessary to
supply other singularities outside the region with the correct period jump.

Influence on Parameterization The result of the final parameterization
step is designed to be independent of the shape of the cut graph as long as the
above properties are fulfilled1. However, a larger number of cuts introduces
more integer variables to the system, which is why the size of the graph should
be kept relatively small. Nevertheless, we can stick to greedy heuristics that
find a valid but not inevitably minimal cut graph.

1In fact, due to the greedy strategy of the mixed-integer solver, a different number of
variables can yield a slightly different solution as explained in the previous chapter.
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(a) (b)

(c) (d) (e)

Figure 3.8: (a) The original setting before local remeshing.
Disk cuts are painted in blue, singularity cuts in green. (b) Sin-
gularities have changed due to an updated cross field. (c) Inner
singularity cuts have been cleared. Entry points are marked
in red. (d) All entry points and singularities have been con-
nected to the existing graph (red). (e) Both resulting graph
components have been connected (red).

Different Types of Cuts For the existing graph within the region, GR =
(V cut

R
, Ecut

R
), we now distinguish between two kinds of cuts. We call those cuts

that were initially created to achieve disk topology disk cuts and name the
induced graph Gdisk

R
. All remaining cuts in GR \ G

disk
R

are called singularity
cuts.

Entry Points Points at which a cut path enters or leaves a region are
called entry points. More specific, an entry point is a vertex v ∈ VR which
is incident to an outer edge e ∈ Eouter

R that is part of the cut graph, i.e.
e ∈ Ecut

R .

It turns out that all requirements can be fulfilled using the following strategy:

1. Keep all disk cuts and delete singularity cuts in the inner region.
2. Connect singularities and entry points to existing cuts.
3. Connect all graph components inside the region.

1. Keep Disk Cuts As a first step, we clear all singularity cuts in the
inner part of R but keep disk cuts. Thus, we initialize the new local cut
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graph G′
R with Gdisk

R plus all outer edges that were also part of the old cut
graph.

2. Connect Singularities and Entry Points In case G′
R
is still empty,

i.e. the region does not contain any disk cuts, we create a root node, by
adding an arbitrary singularity or entry point to G′

R. If there is none, we
can stop here and the local cut graph remains empty. Otherwise, we now
successively connect all singularities and entry points to G′

R
on a shortest

path using a single-source multiple-target version of Dijkstra’s algorithm.

3. Connect Graph Components Its is still possible, that the graph
inside the region does not form a single connected component. This occurs
if Gdisk

R
consisted of multiple components because none of the above shortest

paths will connect them. In this case, an arbitrary graph component is
marked as discovered and a multiple-source multiple-target Dijkstra search
is used to find a shortest path to any undiscovered component. On success,
the path is added to G′

R and both the path and the new component are
marked as discovered.

This finally provides the new local cut graph G′
R which can be used in the

following parameterization step. Apart from satisfying all properties listed
above, some additional observations can be made.

Global Cycles If Gdisk
R

did not contain any cycles, the resulting cut graph
within the region is a tree. If there were cycles, it is guaranteed that no new
ones are added within R. Still, it is possible that the local changes close
global cycles (figure 3.8e). These cycles are not justified by the genus of the
object and thus will create isolated parts of the mesh. If we subsequently
only perform a local parameterization of R as intended, this will not be a
problem. If however we should decide to execute the global parameterization
step instead, these isolated cut components can be arbitrarily translated
within the parameter domain. To solve this issue, the translational part of
the transition function at one cut vertex has to be constrained to the identity.
Since rotations by 90➦ are still possible, care has to be taken to choose a
singularity for this job if possible. Rotating the cut component around a non-
integer position while keeping the rest of the parameterization fixed would
result in a transition function which is no longer a grid-automorphism.

Still, by subsequently computing local cut graphs in different regions, it
is possible to create an arbitrary topology of isolated components. In this
case the transition functions between components are fixed along a spanning
forest in which each cut component is represented by a node.
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Since this heuristic connects all entry points with each other, successively
choosing certain badly shaped regions can provoke a very large cut graph.
This does not affect the quality of the resulting parameterization but has an
influence on performance due to an increased number of integer variables.

3.4 Recomputing a Local Parameterization

In the last step, the parameterization function f has to be updated locally
with respect to the new cross field and cut graph. As for the local cross field
computation, we keep the current parameterization fixed in an outer ring
around the region and set up an equation system providing us with a new
solution for the inside.

(a) (b)

Figure 3.9: The main directions of the cross field are shown as
green arrows. (a) Some directions in the region are not oriented
consistently. (b) This has been corrected by concentrating all
period jump on cut edges (blue).

Consistent Orientation As a pre-processing step we have to establish the
property of consistent orientation (cf. section 2.3), i.e. period jumps turn
zero everywhere but on cut edges.

In the global algorithm, the orientation of an arbitrary cross has been
taken as reference and was propagated over the entire mesh. Now, we are
already provided with orientations in all outer triangles which we must not
change in order to preserve global consistency. Thus, we start propagating
these from the outer ring into the inner region and stop at cut edges. Since
the cut graph cannot isolate any faces within R, all inner faces are affected.

This task can be performed by the below breadth-first search algorithm.
We use a half-edge based search because each half-edge uniquely defines an
edge (whose period jump will be set to zero) and an incident face (whose
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cross will be rotated). The breadth-first approach guarantees that if the
period jump of an edge has been set to zero, it will not be changed again.

foreach edge eij ∈ E
boundary
R

do
Push incident inner half-edge he ∈ HE inner

R
to queue Q.

Flag incident outer face as visited.
end
while Q not empty do

Pop he from Q.
Let eij be the corresponding half-edge and ti the incident triangle.
if eij is no cut edge and ti unvisited then

Flag ti as visited.
θi ← θi +

π
2
pij

pij ← 0
foreach half-edge of ti do

Push opposite half-edge to Q.
end

end

end

Setting Up the System As a next step, we can set up the local problem
matrices B and C to find a solution minimizing the energy Eorient. This time,
only the u and v coordinates of vertices in VR are variables of the system.
Again, vertices that are part of the cut graph have multiple images under
f . The matrix B is filled exactly as in the global version, containing two
columns for each vertex instance, one column for each integer variable used
to constrain the transition function and one column for the right-hand side
of the system. Each vertex instance produces four rows due to the partial
derivatives of the energy function. C still contains four rows per cut edge,
to preserve cross-cut compatibility. This time, we only need to add these
constraints for edges in E inner

R and E
boundary
R

. Outer edges do not have to
be constrained, because the parameterization on both sides will be fixed
anyway. As before, to imply a quad-only mesh, it is important to make sure
that singularities are mapped to integer positions.

Boundary Compatibility In order to retain compatibility to the parame-
terization outside the region, we fix all (u, v) values of vertices on the bound-
ary of R to their current value. If such a boundary vertex has multiple
instances, we fix all instances belonging to the outer ring of the region while
those of the inner region remain free. If the region covers an entire mesh
component such that there are no outer faces, just as in the global algorithm
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a single vertex of the region will be fixed to the origin of the parameter
domain.

Solving the resulting system finally provides us with an updated parameter-
ization for our region and the local remeshing operation is completed.

3.5 An Interactive Comb Tool

The local parameterization approach presented so far paves the way for an
entire new set of interactive quad meshing tools. Designing such a tool
involves three major degrees of freedom: 1) Defining a user interaction, 2)
determining a set of constraints, and 3) finding an appropriate way to choose
a region. In this section, an exemplary tool is created to demonstrate one of
many possible combinations.

The general idea of this tool is to let the user manually brush the alignment
of an existing parameterization into a direction of his choice.

(a) (b)

Figure 3.10: A stroke of the comb tool is used to correct
the edge flow around the arm of the model. (a) Displays the
original situation and an input line drawn by the user. (b)
Shows the extracted directional constraints as well the updated
parameterization. The highlighted region contains all triangles
within a user-specified distance to the new constraints.

User Interaction Using the mouse, brush strokes can be performed on
the surface of an object. After each stroke, the existing parameterization is
updated locally to match the direction of the stroke as well as possible. A
single interaction consists of pressing a mouse button, drawing a path on the
mesh surface and finally releasing the button.
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(a) (b)

Figure 3.11: (a) Shows the end of a curved input line and the
resulting constraints. In a closeup (b) the projected samples pi
as well as their smoothed direction vectors di are visible. Some
path segments have been rasterized by Bresenham’s algorithm
due to slow input processing.

Obtaining Directional Constraints The task of turning the user’s mouse
movement into a set of directional constraints is split into multiple steps.

First, the different mouse positions between pressing and releasing the
button are captured over time and saved as a list of screen-space samples
si ∈ Z

2. Care is taken that all samples are stored in their order of appear-
ance and all pairs of consecutive samples si, si+1 are distinct. If due to the
sampling rate of the particular UI environment samples si and si+1 are no di-
rect neighbors (i.e. the x or y coordinate differs by more than one), a straight
line is rasterized in between using Bresenham’s line algorithm [Bre65].

After that, all samples are projected to the mesh. The projected points,
each located within a triangle of the mesh, are called pi ∈ R

3. Now, for
each pi a direction vector di ∈ R

2 is computed within the local coordinate
system of the respective triangle. To do so, we take the k preceding and k

following samples into account and compute a regression line minimizing the
squared distances to these points pi−k, ... pi+k similarly to [Hop+92]. Since
this is done in 2D and not all affected samples lie within the same triangle,
they are first projected onto the tangent plane of the triangle pi lives in. At
the beginning and the end of the path not all 2k neighboring samples are
present. So only those that are available are taken into account. Obviously,
k works as a smoothing parameter here which is desired in order to avoid
jagged directions. In most examples k = 5 has proven to be a reasonable
choice.

Now, for all samples that lie in the same triangle, the corresponding
directional vectors are summed up and converted into an angle which is
directly used as a constraint for the cross field computation.
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Choosing a Region The affected region is simply chosen based on the
geodesic distance to the drawn comb path. The user can control the size of
the region by specifying a radius r.

We call the set of triangles that contain at least one sample pi in their
interior Tpath. Now, starting with all faces in Tpath as root, we grow a dual
spanning tree consisting solely of shortest paths by using Dijkstra’s Algo-
rithm. To roughly approximate the geodesic distance we use the euclidean
distance between the midpoints of two adjacent triangles as edge costs. We
stop extending a dual path if its length reached the given radius r. At last,
the region R is initialized using all triangles covered by the spanning tree as
the set of inner faces.

Before applying the directional constraints from above, we have to choose
between two options. In the first one, all existing constraints from previous
operations are removed from the interior of R. This is useful if the affected
area was already constrained quite densely or the new and old directions dis-
agree too much. The second option involves keeping the original constraints
in addition to the new ones and only replacing them if both affect the same
triangle. This comes in handy when few initial constraints are given and
the mesh is brushed iteratively, since this way two subsequent strokes with
overlapping regions cannot sweep off each others constraints.

Finally, the local remeshing operation can be started to update the parame-
terization within the region. Results are analyzed in the next chapter.
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Conclusion

This chapter evaluates how local remeshing, as described so far, behaves in a
set of test cases. It shows that the new technique is indeed a big step towards
interactive quad meshing but there is still some challenging work to be done
until it reaches its full potential in practice.

For this purpose section 4.1 analyzes the achievements of this work with
respect to performance, usability and resulting quality. In contrast to that,
section 4.2 illuminates shortcomings of the presented approach and strives to
formulate emerging research questions, solutions to which promise an even
better outcome.

4.1 Results

While performance and usability fully meet our expectations, the achieved
quality jumps between surprisingly good results in some cases but also com-
pletely degenerated ones in other cases.

Performance Table 4.1 and 4.2 each show time measurements of local
remeshing operations using varying region sizes on two models. In both
cases the inner region does not contain any constraints.

Although we regard the number of triangles in the region as input size,
the actual performance does also depend on other properties like the number
of singularities and cut edges. Still, the following measurements give an
indication for the order of magnitude we are dealing with.

In test sessions, typical region sizes varied between (a) and (c) for both
examples. Most operations were completed in less than one second. Even
with a maximum response time of 2.74 seconds for very large regions, this
seems to be sufficient to establish an interactive workflow. However, smooth

41
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Model: Stanford Dragon
Local Global

Figure (a) (b) (c) (d) (e) (f)
Triangles 2786 5530 11053 22086 44178 88178
Cross Field 0.15s 0.17s 0.31s 0.65s 1.49s 3.90s
Cut Graph 0.003s 0.005s 0.01s 0.04s 0.06s 0.14s
Parameterization 0.19s 0.19s 0.40s 1.48s 10.73s 40.11s
Total 0.34s 0.36s 0.72s 2.18s 12.28s 44.15s

Table 4.1: Runtime measurements of local remeshing oper-
ations on the Stanford Dragon using different region sizes are
compared to the global algorithm.

(a) (b) (c) (d) (e) (f)

Figure 4.1: Regions used in table 4.1.

Model: Armadillo
Local Global

Figure (a) (b) (c) (d) (e) (f)
Triangles 10798 21525 43260 86407 172567 345944
Cross Field 0.38s 0.68s 1.42s 3.12s 7.80s 21.85s
Cut Graph 0.01s 0.02s 0.04s 0.10s 0.22s 0.78s
Parameterization 0.27s 0.50s 1.28s 2.98s 11.85s 56.25s
Total 0.66s 1.20s 2.74s 6.20s 19.87s 78.88s

Table 4.2: Runtime measurements of local remeshing oper-
ations on the Armadillo model using different region sizes are
compared to the global algorithm.

(a) (b) (c) (d) (e) (f)

Figure 4.2: Regions used in table 4.2.
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realtime updates (e.g. while performing a stroke with the comb tool) do not
seem to be possible yet.

All performance tests have been executed on the same workstation with
an intel i7-2600 3.4 GHz processor and 16 GB main memory. Due to the
sequential nature of the algorithm, CPU usage was at 100% on a single core
with a maximum memory consumption of 2 GB.

Usability Rating the user experience of new tools can be very subjective.
For this reason, a user study is suggested as future work. For now, some
simple test sessions will suffice.

When experimenting with the comb tool, the following strategy proved to
be most effective: The initial global solution is computed with a very sparse
set of automatically created constraints to achieve a rough alignment to the
global structure of the object. After that, multiple comb strokes are used to
achieve a more desirable alignment to local features. Starting at one ”end” of
the object (e.g. an extremity) and iteratively working ones way towards an-
other end turned out to be more effective than randomly applying operations
to different parts of the object. This way, even undesirable quad structures
covering a much larger part of the object than the individual region sizes can
be corrected. When the desired alignment contradicts existing constraints,
it is advised to first clear a larger region from constraints before using the
comb tool. If an operation does not yield the expected effect, increasing the
region size often improves the result. Depending on the resolution of the
input mesh, the trade-off between region size and computation time has to
be handled with care. Choosing the region too small will give bad results
as due to limited degrees of freedom, while choosing it too large will lead to
bad performance. Experience showed that using a geodesic radius of 10 to
15 times the target edge length is a good starting point.

All in all the comb tool turns out to be very intuitive to use. Since the
region radius is the only additional setting that has to be controlled by the
user, no complicated parameter tweaking is involved. Even knowledge about
topological issues like singularity placement is not required.

Unfortunately, some local operations fail on a regular basis, as explained
in the next chapter. This heavily effects the workflow in its current state.
Implementing undo/redo functionality eases the problem until an actual so-
lution to this issue is available.

Quality In many cases the visual quality of an initial automatic solution
can be improved significantly. Figure 4.3 shows an example where the fore-
arm of the armadillo model has been reparameterized using the comb tool.
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(a)

(b)

(c)

Figure 4.3: (a) Hand and forearm of the armadillo model
have been parameterized with noisy constraints. (b) After re-
moving these, the parameterization has been brushed using
the comb tool. (c) Finally running the global algorithm again
yields slight improvements.
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(a) (b)

Figure 4.4: Shows the angular deviation between the param-
eterizations in fig. 4.3 (b) and (c).

Initially it contained an undesirable amount of singularities due to the high
frequency geometry. After a sequence of comb strokes, all singularities are
located at geometrically meaningful locations although the user did not place
any of them explicitly. The new edge flow is more regular but still aligned
to possible bending directions in animation.

The energies Esmooth and Eorient on the manipulated part of the model
decreased from 355.42 and 78.28 to 133.66 and 66.48 respectively. This is
obviously due to the more moderate set of directional constraints.

Still, the solution might not be optimal because it has been iteratively
computed within multiple closed regions. By running the original MIQ al-
gorithm again as a final step, the solution approximates a global minimum
based on the new set of constraints. Applied to the armadillo example, the
cross field energy improves only slightly to 133.35 while the alignment energy
drops by almost 30% to 46.72.

Anyhow, this post-processing step is only reasonable if the final edge flow
does not diverge from the interactive result too much, i.e. it still represents
the user’s prospect. Fortunately, in most examples this seems to be the case.
Figure 4.4 shows the results of both steps as well as a metric describing the
angular deviation between the directions of the parameter lines1.

1Expressed per triangle as min
i∈{0..3}
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To further test the effectiveness of the comb tool, a completely unconstrained
parameterization of the Stanford dragon has been improved in an interactive
session (figure 4.5). Care was taken to align the edge flow to possible bending
directions.

(a) (b)

Figure 4.5: An initial randomly oriented parameterization
(a) of the Stanford dragon has been edited using the interactive
comb tool (b).
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4.2 Limitations and Future Work

In this last section, problems in the current state of the project are addressed.
The most unpleasant issue right now is that a substantial amount of remesh-
ing operations fails because these lead to topologically impossible situations.

(a) (b)

Figure 4.6: Local operations leading to (a) non-quad configu-
rations and extreme distortion or (b) non-quad configurations
and a broken transition function.

Topological Problems In most practical situations it is possible to find
a local cross field, satisfying all constraints. In contrast to this, the resulting
singularity configuration does often not allow a valid quad mesh that still
matches the region boundary. Consequently, the parameterization step fails.
In our implementation this leads to any combination of non-quad configura-
tions, extreme distortion (figure 4.6a) and violated constraints such as illegal
transition functions (figure 4.6b).

Known Restrictions In [Pen+11], Peng et al. investigate which topolog-
ical modifications of given quad meshes are feasible within a local region
and which are not. They focus on changing singularity configurations while
keeping the boundary of an otherwise regular region fixed. For certain pos-
sible cases, they provide operations working explicitly on the existing quad
topology. In addition, they proof that some particular other modifications
are never possible. Their results can be directly applied to our method in
order to show that some changes within a region do not allow a valid (or
high-quality) parameterization. Two examples are presented in the follow-
ing:
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Figure 4.8: In a region with only two singularities (here of
degree three and five) it is not possible to cancel these. Our im-
plementation yields a parameterization with a non-quad con-
figuration.

”A region containing only one irregular vertex cannot be edited.”
[Pen+11]

In figure 4.7, we choose a region around a valence three singularity and add
constraints that force it to move. Since there is only one valid quad mesh
topology for this region, the only way to change the singularity position is
to alter the geometry of the implied quad mesh. Consequently the parame-
terization is stretched extremely.

Figure 4.7: The quad topology inside a region with exactly
one singularity is fixed. Moving it introduces high distortion
to the parameterization.

”[In] a region containing two irregular vertices [...these] cannot
be canceled.” [Pen+11]

Figure 4.8 shows how the current implementation reacts if we force the sin-
gularities to cancel out each other.

Detecting Impossible Operations Despite these results, there still is no
rule describing which topological changes of a quad mesh region are possible
in general. If such a rule is found in future, impossible operations can be
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detected and aborted before executing the local remeshing algorithm. Since
this feature is essential to make our method applicable in practice, it forms
the most important research question for future work.

Finding a Feasible Region Based on such a rule, further improvements
are conceivable. It could be investigated if a region can be extended in such
a way that a previously infeasible operation becomes possible.

Optimizing the Region Shape Apart from the above considerations,
regions are currently chosen in a very naive fashion. Simply using a geodesic
region around user constraints does not exploit any geometric properties of
the input surface. Since the effect of changing constraints might not be
distributed uniformly, regions could be optimized to only cover areas of high
influence. For example the effect of an operation may decrease when passing
already constrained features. Thus the region could be reduced there and
extended in another direction. Therefore, finding regions that compensate
user operations more efficiently constitutes another research question.

Controlling the Amount of Singularities In some cases, a set of suc-
cessive strokes with the comb tool does not yield the expected alignment.
Often the necessary degrees of freedom can be achieved by inserting addi-
tional singularities. Since manual placement of singularities can be a very
difficult task, it is desirable to introduce a parameter controlling the trade-off
between element distortion and the number of singularities as in [MZ13]. It
will be worthwhile to investigate if their technique can be integrated into our
interactive approach.

Improvements to the Comb Tool The comfortable use of the comb tool
can be further improved by enabling more precise operations. E.g. snapping
manually drawn brush strokes to geometric features is very likely to improve
the achieved accuracy. Using the geometric snakes algorithm [LL02] can be
a way to achieve this property.

Additional Tools In various test sessions a demand for additional tools,
complementing the comb, has been identified. The most prominent are: 1)
An eraser brush which clears constraints in a certain radius around the mouse
cursor, and 2) a reparameterize brush that can be used to quickly select a
region which will be updated without changing any constraints. This way,
a suboptimal edge flow resulting from multiple operations with small region
sizes can be improved. Both concepts proved useful in some manual tests.
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4.3 Summary

In this thesis we gave an introduction into the field of quad meshing by
explaining possible applications in animation and physical simulation as well
as listing common quality criteria. The need for new interactive tools was
motivated by troublesome manual creation on the one hand and automatic
methods lacking fast user response on the other hand.

Next, the existing mixed-integer quadrangulation pipeline was described.
This includes generating a smooth cross field, finding a valid cut graph and
computing a global parameterization. Using this knowledge, we went through
all the adjustments that have been made to the individual steps in order to
enable local remeshing. Equipped with the ability to update an existing
parameterization in closed regions, we described what it takes to build inter-
active tools on that basis. As a first example we developed a comb tool and
analyzed its results in terms of performance, usability and resulting mesh
quality.

Although impressing results could be achieved in some cases, others failed
completely. Based on existing research we confirmed that certain situations
occurring during local operations are indeed impossible to solve. As a conse-
quence, we formulated multiple research questions. These include: 1) Finding
a formal description of which operations are feasible or infeasible in general.
2) Providing ways to extend regions such that all necessary degrees of free-
dom are obtained. 3) Choosing regions to precisely cover areas which are
highly influenced by a particular operation.

Finally it can be said that local remeshing does have the potential of
becoming a part of practical workflows but a number of related problems has
yet to be solved.
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