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Abstract

Recent developments in parametrization based quad meshing allow for interactive

constraint editing sessions. Automatic suggestion of constraint templates for local

surface regions is expected to further assist a high-level design process.

This thesis sketches a system that recommends such constraint sets, called

macro constraints, based on a template library. In particular, it focuses on two sub-

problems: retrieving a suitable template from the database and then re-embedding

it on the target surface.

While the first task can be solved by a standard approach, the second one

involves the difficult problem of partial inter-surface mappings. For the latter, a

descriptor guided approach using non-linear optimization is proposed.
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Chapter 1

Introduction

Parametrization based quad meshing methods recently became robust and fast

enough for interactive workflows, cf. [CBK15], [ESCK16]. Users are now able to

explore the design space by iteratively adding and manipulating constraints such

as prescribed directions, sizing and singularity configurations.

A major motivation for interactive approaches is that a user’s design intent of-

ten deviates strongly from formalized quality criteria like uniformity, regularity,

isotropy and alignment to principal curvature directions. Instead, it may incorpo-

rate artistic expression as well as expert knowledge for which explicit formula-

tions are not available.

However, typically chosen constraint sets reveal common patterns within a

class of shapes, and interactive quad meshing sessions still contain highly repeti-

tive actions. Often, information about possible design choices is already contained

in previous sessions on different shapes of the same class.

To further assist the design process on a higher, more creative level, it is con-

ceivable to use data-driven approaches which infer constraint sets for parts of 3D

models based on previous sessions on similar parts. The resulting constraint sets

could potentially be superior to those obtained by traditional methods as they are

based on information going beyond surface properties of a single isolated shape

and incorporate knowledge about prevalent design intents.

In this thesis, a potential system for this task is considered and two subprob-

lems are examined in detail. This system is centered around a database containing

triangle mesh patches, cut out from larger meshes. Each patch is equipped with

a set of constraints, which was created by a user in a preceding session. We call

such a set of constraints, defined on a local surface patch, a macro constraint. In

an ongoing session on a new triangle mesh, unknown to the system, the user can

specify a region of interest and query the database for constraint suggestions. Af-

ter that, a patch which is similar in shape to the target region will be identified by

the system and mapped to the target surface. Constraints attached to the queried
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2 Chapter 1. Introduction

patch are then transferred to the target where they are used as an input to existing

quad meshing methods.

1.1 Quad Meshes in Character Animation

Discrete surface meshes are the representation of choice for three-dimensional

objects in a majority of applications. Despite the various advantages of trian-

gle meshes, some domains prefer meshes consisting entirely of quadrilateral el-

ements. For example, quad meshes are commonly used as control meshes for

parametric spline surfaces like NURBS, see [Bom12]. Moreover, they are partic-

ularly well suited for subdivision surfaces, as they maintain a consistent edge flow

under regular refinement, cf. [BLP+13]. Especially for use in character animation,

this property is of great importance as it influences the appearance of the resulting

surface as well as its behavior under deformation.

Quality Criteria

Typical quality criteria aimed for in the literature include, but are not limited to,

the following: (1) Uniformity aims at equally sized quads or equal edge lengths

in the entire mesh. (2) Isotropy describes quads extending equally along both

directions and thus being close to a square. (3) Regularity is present in a region

of the mesh if it contains no singularities, i.e. no vertices with valence other than

four. (4) Alignment to the underlying geometry is, for example, achieved if the

edge flow of a quad mesh follows the principal curvature directions of the object.

(5) Preservation of sharp features, e.g. edge paths of high dihedral angle, is also

an important quad mesh property. Common quality criteria are discussed more

thoroughly in e.g. [BZK09] and [BLP+13].

However, these criteria are not independent from each other. Most promi-

nently, regularity and alignment to given directions can be conflicting concepts.

While, depending on the genus of the object, pure regularity is topologically im-

possible, a larger number of singularities can give more flexibility in the align-

ment of the edge flow. Thus, regularity and alignment often present a trade-off,

cf. [MZ13]. Furthermore, snapping edge paths of the quad mesh to given feature

lines typically comes at the cost of decreased isotropy, which is gladly accepted

in e.g. [BZK09].

Quad meshes created manually by artists however reveal a different set of

properties. For example, quad meshes used in character animation do not only

have to provide a precise surface representation under subdivision, but also have

to maintain good quality under deformation. If the type of deformation is not
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Figure 1.1: (left) The quad mesh was created manually for the film “Sintel” as part of

the Blender open movie project. (right) The same mesh is shown under two steps of

Catmull-Clark subdivision. © Copyright Blender Foundation — www.sintel.org.

known a priori, the necessary quality criteria are difficult to formalize. Therefore

in practice, high-quality quad meshes are preferably created by skilled artists.

As a representative of the resulting class of meshes, Figure 1.1 gives a number

of useful insights. First of all, large differences in element size can be observed,

when e.g. comparing quads around the mouth to quads on the forehead. This can

be easily explained by the amount of expected deformation in the respective areas,

since a high mesh resolution provides more flexibility in handling various kinds of

distortion. Additionally, in a subdivision setting, finely tessellated regions allow

modeling sharper details, while coarse regions are heavily smoothed.

Moreover, the isotropy criterion is clearly violated in this example. As can

be seen at the ear of the model, this allows accurate surface modeling while still

maintaining a relatively low number of quads. In Addition, anisotropy is used to

locally increase the resolution without adding additional singularities, as observed

in the area around the eyes.

www.sintel.org
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Accordingly, regularity still seems to be of high importance, since the mesh

shows only few irregular vertices. In contrast to e.g. [BZK09], these are not pri-

marily placed in regions of high Gaussian curvature, but far away from areas of

high anticipated deformation.

Furthermore, artists strive to align the edge flow of a mesh to muscular struc-

tures representing the direction of expect deformation. Often, these coincide with

principal curvature directions, however not always in a strict sense.

1.2 Interactive Constraint Editing

The above observations motivate closing the gap between purely manual and en-

tirely automatic quad remeshing methods. A promising approach in this directions

is presented by interactive constraint editing sessions, built on top of parametriza-

tion based quad meshing algorithms. In these sessions, users are initially provided

with an automatically generated quad mesh. In the following, they can iteratively

add or manipulate various types of constraints, while the resulting quad mesh is

updated after each interaction, see [ESCK16].

Parametrization Based Quad Meshing

The family of parametrization based methods is particularly well suited for this

purpose, due to numerous possible ways to constrain them. Such methods, e.g.

[BZK09], take a given triangle mesh as an input and start by cutting it open until

it is topologically equivalent to a disk. Then, the mesh is mapped to the plane,

i.e. parametrized, by assigning a pair of (u, v) coordinates to each vertex. In the

resulting 2D embedding, the flattened mesh is covered by a regular grid. Finally,

mapping this grid back to the original 3D mesh, provides a quad pattern on the

surface. To assure consistency of this pattern across cuts, certain conditions have

to be imposed upon the parametrization. In [BCE+13], these conditions are for-

malized and the term integer-grid maps is coined for the class of parametrization

functions adhering to them.

In the following, we list a selection of constraints which can be used within the

framework of parametrization based methods. In particular, this list focuses on

manual constraints that can be directly controlled by user input.

Directional Constraints

As an alternative to directly aligning the edge flow of a quad mesh to the principal

curvature directions of a shape, guiding constraints can be manually employed by

a user. In their simplest form, these constraints are defined by polygonal lines,
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drawn on the input surface. The direction of these lines locally translates into

guiding directions for the resulting edge flow. An important aspect is that edges

of the eventual quad mesh do not have to be located on an input line, but merely

follow its direction. In [ESCK16] the effect of such input lines is extended to

entire regions around the line. The size of these regions provides the user with

another control parameter for the effect of a constraint.

Feature Constraints

A similar concept is presented by feature constraints, as these are also defined

by lines embedded in the input surface. In addition to prescribing directions, this

constraint type also forces a sequence of connected vertices in the resulting mesh

to lie exactly on the input line. While directional guides are often referred to as

soft constraints, feature lines are also called hard constraints. On the one hand

these can be used to preserve sharp features of an object. On the other hand,

hard constraints provide an effective way for users to very directly manipulate

the resulting quad mesh. In the extreme case, these constraints can be used to

completely prescribe a fixed quad pattern in a region of the surface.

Singularity Constraints

Although automatic methods strive to place irregular vertices in geometrically

meaningful locations, these might not reflect the user’s design intent, as seen in

the example above. Parametrization methods therefore allow manual placement of

singularities as long as certain topological requirements are fulfilled, cf. [Bom12]

and [PZKW11]. Consequently, a user is allowed to re-locate existing singularities,

to add pairs of new singularities or to merge existing ones. Moreover, it is possible

to either entirely hand over the control of the singularity structure to the user, or

to just prescribe some singularities and let the algorithm choose the others.

Connection Constraints

As another way to gain control over the topology of the quad mesh, connection

constraints can be utilized. Such constraints are employed between pairs of sin-

gularities or other feature vertices and ensure that these are directly connected by

an edge path in the resulting quad mesh. Similarly, loop constraints can be used

around cylindrical surface parts, assuring that the edge flow forms closed loops

around them. This is an especially important tool to prevent helix structures in

cylindrical regions.
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Sizing & Anisotropy Constraints

The example in Figure 1.1 demonstrates that adaptive or non-uniform sizing is

often a desired property. Desired sizing information can be expressed by a scalar

sizing field or even an anisotropy field defined on the input surface. Alternatively,

some approaches allow sketching single quads of certain size and anisotropy in

different surface regions and automatically infer a corresponding field. While

prominent parametrization methods can be extended to take such a field as an in-

put, a limiting factor is presented by their impact on the singularity structure. As

effective transitions between areas of large quads and areas of small quads require

special singularity configurations, realizing sizing constraints is an intricate prob-

lem on its own. Methods successfully taking such constraints as an input are e.g.

[PPTS14] and [JFH+15].

1.3 Macro Constraints

The system sketched in this thesis is based on the notion of macro constraints.

We define a macro constraint to be a set of constraints defined on a local surface

patch. This set may include all constraint types defined in the previous section. In

fact, we design our method to be agnostic to the exact nature of these constraints.

A large number of macro constraints, collected in a database, builds the basis

of the recommendation system. In its final version, this database should be filled

with numerous macro constraints, which are obtained from interactive quad mesh-

ing sessions performed by skilled artists. Within the scope of this thesis, a small

manually filled test database suffices, as we primarily focus on two technical sub

problems of the system.

Further, we employ a restriction on the nature of the supporting surface patch.

To simplify the setting, all patches are assumed to be simply connected, i.e. topo-

logically equivalent to a disk, having a single boundary. Moreover, we choose the

patches in our test database to be geodesic disks. This means that starting from

a central point on the patch, it exhibits equal geodesic distance to all boundary

points.

In a first version of the system, we picture the following user interaction: dur-

ing an interactive constraint editing session, the user starts by also selecting such

a geodesic disc on the target object. This can be done by choosing a point on the

surface as well as a geodesic radius. In the following retrieval step, the database

is searched for similar surface patches. For example, a fixed number of suitable

matches can be shown to the user. After choosing one of the suggested patches, a

map from this source patch to the selected part of the target surface is computed.

Finally, all constraints are transferred form the source patch to the target. We also
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Figure 1.2: The envisioned constraint recommendation system is illustrated. On the

target mesh (center), five regions are subsequently selected by a user (blue). Each one

is equipped with direction guides by re-embedding a macro constraint (left). The macro

constraint used for the eye is employed twice, giving an approximately symmetric result.

The resulting quad mesh is locally aligned to the transferred direction constraints (right).

say they are re-embedded on the target surface. There, they are used as an input

to a standard quad meshing algorithm.

To achieve independence from the actual types of constraints, both the re-

trieval and the re-embedding phase do not consider the constraints attached to the

source patch. In particular, both steps are based entirely on the geometry of the

supporting patch.

Figure 1.2 depicts a use case of the system. Here, multiple regions on the

target mesh are selected and each one is equipped with a macro constraint from

the database. Based on the re-embedded directional constraints, an aligned quad

mesh is generated.

This thesis is structured as follows: we start by a review of related work in Chap-

ter 2. In Chapter 3, a bag-of-features approach is tailored to the retrieval task,

followed by an evaluation of the results on a small dataset. The main contribu-

tion of this thesis is presented in Chapter 4, where a method to compute partial

inter-surface mappings between two patches is proposed. In the following evalua-

tion, successful examples are shown and the remaining issues of the approach are

discussed in detail. Finally, Chapter 5 gives an outlook to possible future work.
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Chapter 2

Related Work

This chapter gives an overview of existing publications in the fields of parametri-

zation based quad meshing as well as shape descriptors, shape retrieval and shape

correspondences.

Parametrization Based Quad Meshing

The general approach employed in modern parametrization based quad meshing

algorithms is introduced in both [KNP07] and [BZK09]. The former takes a guid-

ing cross field as an input and solves the mixed-integer problem, arising in the

parametrization step, by directly rounding variables of a continuous solution to

close-by integer values. The latter computes both, a smooth cross field and a

global parametrization using an iterative greedy rounding scheme, alternating be-

tween solving a continuous problem and rounding a subset of integer variables. In

[BCE+13] a robust method is proposed. First, sufficient conditions for parametri-

zations to imply a quad mesh are formally introduced using the term integer-grid

maps. After that, it is shown how to compute an exact solution of a reduced prob-

lem using a general purpose solver. However, the linearization of local injectivity

constraints excludes valid parts of the solution space. Finally, [CBK15] proposes

a new greedy strategy which both guarantees valid solutions and is significantly

faster than its predecessor. A robust method to extract valid quad topology from

a parametrization, despite some violations of the integer-grid map conditions, is

introduced in [EBCK13].

Optimizing for both, high quality parametrizations and a suitable placement of

singularities at the same time proved to be a challenging problem. Therefore, the

process is commonly split up into two steps. First, a guiding frame field or cross

field is generated which already defines the position and degree of singularities.

In the following step, these singularities stay fixed, and a parametrization is com-

puted such that its iso-lines follow the guiding field. Extending the approach of

9
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[BZK09], [ECBK14] generates noise-robust cross fields at a specified level of de-

tail by a controlled smoothing of normal fields. The authors of [PPTS14] produce

anisotropic and non-orthogonal frame fields by computing a cross field on a de-

formed input surface. Similarly, [JFH+15] compute such fields via cross fields in a

customized metric. In [DVPS14], even more general n-vector fields are computed

and the commonly used mixed-integer formulation is avoided by encoding the

variables in complex polynomials. On top of this formulation, [DVPS15] makes

an attempt to create integrable frame fields, which constitutes a step towards re-

uniting both the field generation and the parametrization step. A comprehensive

survey on state-of-the-art direction field computation is given in [VCD+16].

Interactive Quadrangulation

Some publications target the automatic generation of particular constraint types:

[CIE+16] finds connected regions of homogeneous curvature directions, while

[GLK16] detects feature curves at a specified scale. In adition to automatically

generated constraints, the methods listed in the previous section can be con-

strained by user input to various degrees.

Other publications explicitly define user metaphors: e.g. in the context of quad

layouts, [CK14] proposes an input method method in which cyclic strips are used

to completely define a layout.

To achieve run times fast enough for interactive workflows, the authors of

[ESCK16] introduce a hierarchical approach to speed up an entire class of para-

metrization based methods.

A different path is taken in [TPSS13] and [TPS14]. Here, a sketch based user

interface is created, assisting manual workflows by completing various actions. In

[MTP+15], a database of quad topologies is used to automatically fill user-defined

patches. This data-driven approach follows a similar motivation to the system de-

scribed in this thesis. However, (1) the data employed in [MTP+15] is of purely

topological nature and (2) the resulting quad meshes have no means of being glob-

ally optimal. In contrast, our approach allows encoding various combinations of

geometrical and topological constraints in the database. Furthermore, by using

constraints instead of actual quad patterns as a currency, we can rely on external

methods to compute or approximate a globally optimal solution.

Shape Descriptors

The concept of shape descriptors finds its roots in computer vision, where image

descriptors are successfully applied in various tasks. While in computer vision

the SIFT descriptor [Low04] emerged as a de facto standard, a well-performing

general purpose shape descriptor is yet to be found.
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The survey [XKHK17] lists numerous shape descriptors and divides them into

the categories of global (representing an entire shape) and local (representing a

single point) descriptors. In the following, descriptors considered in the context

of this work are described.

Following the concept of the histogram of oriented gradients descriptor in

computer vision, [LWWS15] proposes the histogram of oriented curvatures. For a

single point, this descriptor employs a tangential grid. In a neighborhood around

the point, the maximum curvature directions are projected into the grid and an

orientation histogram is created for each cell. Due to the discrete cell assignment

as well as discrete binning, the distance fields emerging from this descriptor are

far from smooth and thus not suitable for our method in Chapter 4. Furthermore,

the local grid has to be aligned to the maximum curvature direction at each point,

which can be unstable or unavailable in flat surface regions.

Two prominent representatives from the family of spectral descriptors are the

heat kernel signature [SOG09] and the wave kernel signature [ASC11]. Based on

the eigenfunctions of the Laplace-Beltrami operator, these descriptors consider

shapes in a frequency spectrum. Using this representation, they are intrinsic, i.e.

invariant to isometric deformations. Both methods borrow different concepts from

physics, resulting in different behavior with respect to high-frequency details. In

[BBC+10] the heat kernel signature is extended to a scale invariant descriptor. The

author of [Bro11] shows how to obtain a spectral descriptor, customized to a given

database of shapes, by learning techniques. In the setting of local surface patches

with boundaries, spectral descriptors lose a large part of their discriminative power

due to the lack of global information.

The authors of [KBLB12] propose a meta descriptor, which takes an existing

descriptor field as an input and enhances it by including neighborhood informa-

tion in each point. Specifically, descriptor values are softly assigned to the cells

of a polar grid around each point. To achieve rotation invariance, the arbitrary

rotational offset, present in each instance of the grid, is removed using a Fourier

transform.

Shape Retrieval

Chapter 3 is mainly based on the bag-of-features approach proposed in [OBBG09].

For evaluation, the authors use the popular TOSCA dataset [BBK08] providing

shapes categorized in different classes. To test the invariance with respect to cer-

tain transformations, the set includes isometric deformations, topological differ-

ences and missing parts in each class.

In the context of the 3D Shape Retrieval Contest (SHREC), an overview of

recent developments in shape retrieval and matching is published each year. In

particular, the presented methods are thoroughly evaluated using unified bench-
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marks. Notable examples include [LGB+11], [LZC+15] and [RCL+17]. The

former two evaluate methods with respect to non-rigid deformations: [LGB+11]

introduces and [LZC+15] extends a test database with models assigned to different

classes. Each class exhibits variance in form of pose variations, artificially created

by deforming a skeleton representation. While these two benchmarks are based

on watertight meshes, [RCL+17] considers meshes with missing parts and topo-

logical noise. Both cases, i.e. retrieving complete meshes using a partial query

and finding partial results matching a complete query, are evaluated. This situa-

tion is similar to our setting, as we consider parts of objects with varying degrees

of common geometry.

Moreover, [SSSC08] partitions objects and matches corresponding parts both

within a single shape and between shapes. Also relevant within our context is

[LWWS15], where similar parts of a single shape are detected and transformations

between them are computed.

Shape Correspondences and Mappings

The problem of defining meaningful correspondences between points of two (or

more) surfaces is subject to ongoing research and has been approached from mul-

tiple perspectives. As no general and effective solution to the problem is available,

numerous methods have been published, following different solution paradigms.

Methods differ in the exact formulation of the problem, in the types of input pro-

vided, and in the types of invariance they support. The survey [KZHC11] gives

an extensive overview over existing literature.

One particular family of methods emerged as an extension of registration

methods like the iterative closest point (icp) algorithm [RL01]. Such non-rigid

registration algorithms alternate between deforming one of the shapes and updat-

ing its correspondences to the other. A demonstrative example of this class is the

soft-icp algorithm presented in [SBSC06]. This method continuously interpolates

between a rigid icp-like alignment and a soft deformation. In [HAWG08] a robust

algorithm following a similar approach is proposed, which can handle missing

parts as well as isometric deformations and preserves geodesic distances.

Another popular class of methods is based on pointwise shape descriptors.

Some publications, presenting novel descriptors, also propose simple matching

algorithms, such as [ASC11]. Here, a greedy strategy is described, which first

generates a large number of candidate correspondences and then picks those that

best preserve geodesic distances between both shapes. The authors of [OMMG10]

use the heat kernel signature to recover isometries between shapes by taking a sin-

gle point-to-point correspondence as an input. [DLL+10] also uses the heat ker-

nel signature to partition each object and then establishes a part-to-part matching,

specifically targeting incomplete models.
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Further, probabilistic models also yield effective solution methods. Models

such as Markov random fields allow formulating a discrete assignment problem by

defining single potentials (favoring geometric similarity) and pairwise potentials

(favoring isometry). An illustrative example of such a method is described in

[ASP+04]. [TB11] follows a similar approach, but operates on a subset of vertex

pairs. Both solve the resulting problem using loopy belief propagation.

The authors of [SNB+12] abandon the concept of discrete point-to-point corre-

spondences and represent soft maps using probability martrices. Their descriptor

based method can cope with non-isometric deformations and some issues related

to the inherent ambiguity of such mappings are avoided. In [OBS+12], the authors

also generalize the concept of explicit point-to-point correspondences by estab-

lishing a map between the eigenfunctions of the Laplace-Beltrami operator. De-

spite the indirect formulation, these maps can still be used to transfer attributes be-

tween isometric objects. [RCB+15] analyses the behavior of these eigenfunctions

when removing parts of a shape and proposes an extended method. [LRBB17] ex-

tends the concept even further, working entirely within a spectral domain. Except

for an initialization step, this method is independent of the mesh complexity.

A series of publications addresses the problem of maps between surfaces in

a parametrization setting. However, all of them use a sparse set of user-defined

correspondences as an input. In [APL14], both meshes are cut to topological

disks and are then parametrized minimizing isometric distortion. It is shown how

to establish a mapping from these parametrizations using the property of local

but not global injectivity. In addition, [APL15] proposes alternative parametri-

zations, rendering the method invariant to the nature of the cut graphs. Finally,

both [AL15] and [AL16] introduce a novel extension of Tutte embeddings, also

enabling maps between multiple shapes, given a set of initial correspondences.

The term inter-surface maps, as used in this thesis, is coined in [SAPH04].

There, a hierarchical approach is used to compute distortion minimizing map-

pings, however without explicitly using an intermediate parametrization domain.

Parts of our deformation method in Chapter 4 show parallels to [SS15]. The

authors also start with a Tutte embedding of a surface chart and then deform it

by non-linear optimization. They minimize a distortion measure based on the sin-

gular values of the Jacobian and use barrier functions to ensure local as well as

global injectivity of the parametrization. However, their setting is somewhat sim-

pler than ours, because the authors only consider a single parametrization instead

of an inter-surface map.
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Chapter 3

Patch Retrieval

This chapter describes how to find an appropriate retrieval method for the system

sketched above. Such a method should be able to efficiently query an existing

database for a suitable macro constraint, based on its supporting geometry.

This database is filled with surface patches, each one equipped with a set of

constraints. For the scope of this thesis, each patch is restricted to be a geodesic

disc, manually cut out of a larger model. We normalize patches such that their

geodesic radius is 1. All patches and models, also called shapes, are considered

to be triangle meshes.

To simplify the setting, we require queries to the database to be of the same

type as its data, i.e. geodesic surface patches. This means that a user, who wishes

to add constraints to a certain part of a model, has to select a target region on

that model. Since this region also has to be a geodesic disc, the selection can be

performed by choosing a point and a radius on the target mesh. The resulting

region is then cut out of the model and referred to as the target patch. This patch

can now be compared against all items in the database.

To permit quick response times, the comparison has to be efficient. For exam-

ple it is not feasible to try and compute a mapping from each source patch to the

target patch and pick the best one. Similarly, methods computing a deformation

energy between patches cannot be used. More specifically, we are looking for a

method in which the cost of a query does not depend on the complexity of the

patches but works on a reduced representation. This representation is supposed to

capture the characteristics of a patch and can be computed in an offline process

for the entire database. In contrast to the patches in the database, the target patch

is not known in advance, so that its representation has to be computed on the fly.

In this version of the system, we choose to base the comparison entirely on the

geometric properties of both patches. Existing constraints on a source patch are

not taken into account at this point.

15
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We use dense shape descriptors to characterize each point of a surface patch.

Based on this, a bag-of-features approach is employed, generating a histogram-

like representation for each patch. Computing a distance measure between these

representations then is a very inexpensive operation. Therefore, databases of mod-

erate size can be linearly searched for either a single best match or a set of best

matches.

In the following, Section 3.1 briefly introduces a selection of relevant descrip-

tors. Section 3.2 describes how a bag-of-features approach can be employed in

our setting and Section 3.3 gives an evaluation.

3.1 Shape Descriptors

Local shape descriptors are a successful concept in computer vision. There, points

of an image are described by an intermediate representation, taking into account

a small neighborhood around each point. On the one hand, this representation

should capture all relevant and discriminative information about this point. On

the other hand, it should be widely invariant to a class of transformations, most

importantly to rotations. A standard example is the extremely popular SIFT de-

scriptor [Low04].

While image descriptors yield strong results in a variety of applications, trans-

ferring the same concept to shapes has proven to be slightly less successful. Some-

what surprisingly, local geometry does not provide as much discriminative infor-

mation as a piece of a colored image, cf. [KBLB12]. Furthermore, a surface region

lacks a natural global coordinate system, which is trivially given in the case of im-

ages. For these reasons, numerous shape descriptors have been proposed. How-

ever, no standard choice, providing good results in a majority of applications, has

emerged. Consequently, many applications come with their own custom-tailored

descriptor.

This thesis relies on local shape descriptors in

both this chapter and the re-embedding technique in-

troduced in Chapter 4. Due to the variety of existing

descriptors, we formulate our algorithms as invari-

ant as possible to a concrete choice. In particular,

we treat a shape descriptor as a function mapping

each point of a given surface to a vector in a fixed-

dimensional space (see inset). For a surface S, we

denote this function by I : S → R
d. In a discrete

setting we assume it to be defined on vertices of a

mesh. Furthermore, each descriptor comes with a distance function d(p, q) ≥ 0,

comparing elements of the descriptor space observed at point p and q. This dis-
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tance may be an L1, L2 or any other kind of distance measure. While the approach

described in Chapter 4 is entirely invariant to the nature of the distance function,

in this chapter we make use of an embedding in Euclidean space.

While some methods evaluate descriptors only sparsely, i.e. at a number of

pre-selected feature points, this work relies on dense descriptor fields, available at

each point of a shape.

As a thorough evaluation of different descriptors exceeds the scope of this thesis,

we pick two representatives for our experiments. For more possible descriptor

choices, the reader is referred to the literature listed in Chapter 2.

Curvature Based Descriptors

A local property which is both well studied and invariant to rigid transformations

is the curvature of a surface. At a point on a two-dimensional manifold, embedded

in 3D, walking into a tangential direction changes the unit normal. The amount

of change with respect to an infinitesimal step is called the normal curvature. The

two directions in which the normal curvature takes its extreme values are called the

principal directions, which are always orthogonal to each other. The magnitude

of change along these directions is called the minimum and maximum curvature

respectively.

Some descriptors directly adapt concepts from computer vision and regard the

distribution of curvature directions in the neighborhood of a point, e.g. [LWWS15].

These however can only be measured with respect to a reference direction, e.g. the

maximum curvature direction at the point itself. Unfortunately, this direction is

not uniquely defined at flat or umbilical points and often unstable in their vicinity.

Thus, such a descriptor is not robustly available at each point of the surface.

Instead we can simply consider the scalar curvature magnitudes which are

meaningful without a reference direction. In particular, we pick three quantities

computed from them: their mean, their product (called Gaussian curvature) and

the absolute value of the maximum curvature. While the absolute maximum cur-

vature only describes how much a surface is curved locally, the Gaussian curvature

can distinguish between elliptic and hyperbolic regions, and the mean curvature

is able to describe parabolic regions.

The required principal curvature magnitudes can be computed as the eigenval-

ues of the shape operator at each point. In a discrete setting, the shape operator

has to be integrated over a certain neighborhood, e.g. using a Gaussian kernel.

The scaling parameter σcurv of this Gaussian determines how much neighborhood

information is included in the value at a certain point. In other words, choosing

larger values of σcurv smoothes the resulting descriptor field.
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Spectral Descriptors

A very popular class of state-of-the-art descriptors is based on the spectral—or

frequency—analysis of a shape. Similarly to the Fourier transform, a shape is

considered in its frequency spectrum, using the eigenfunctions of the Laplace-

Beltrami operator as a basis. The approach is particularly attractive as this eigen-

basis is invariant to isometric deformations of the shape.

Two prominent descriptors using this setting are the heat kernel signature

[SOG09] and the wave kernel signature [ASC11]. The former solves the heat

equation to describe diffusion properties of the shape. Intuitively, for each point,

it answers the following question: if a fixed amount of heat is applied this point,

how much of this heat remains after a certain time t? The extrema of the resulting

field behave similarly to the Gaussian curvature. In elliptical regions heat diffuses

slower, yielding high values, while in hyperbolic regions neighborhoods of larger

area allow for faster diffusion, and thus result in low values. This measure is taken

at different values of t and each result is used as a component of the resulting fea-

ture vector. The distance between two such vectors is built around the Euclidean

distance, but also performs a normalization in each dimension and accommodates

for logarithmically spaced time steps.

The second example, the wave kernel signature, is also based on the eigenval-

ues and eigenfunctions of the Laplace-Beltrami operator, but exploits a different

physical concept. It measures the average probability over time to observe a quan-

tum particle of a certain energy e at the surface point in question. As the heat ker-

nel signature is parametrized over time, the wave kernel signature is parametrized

over the energy e. Here, large values of e describe high frequencies of the sur-

face, while small values correspond to low frequencies. The authors of [ASC11]

propose to sample 100 discrete values of e, i.e. the wave kernel signature is a

100-dimensional descriptor. Two descriptor vectors are compared by the sum of

relative differences between corresponding vector entries. As the sampling of e is

chosen depending on the smallest eigenvalue, care has to be taken to choose the

same sampling when comparing multiple shapes.

Practical differences between the heat kernel and the wave kernel signature

can be observed considering its sensitivity to small details. While the heat kernel

signature acts as a sequence of low-pass filters, and thus describes rather global

properties, the wave kernel signature also incorporates the description of high-

frequency detail.

Within the setting of patch retrieval, we have to make the additional choice of

whether to compute a descriptor on isolated patches with boundaries, or to com-

pute it on entire shapes and then cut out the patch. In the case of spectral descrip-

tors the difference is significant, as this decides if global information beyond patch
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boundaries is taken into account. As we prefer to regard each patch individually

and independent from the model it was taken from, we aim for the first option.

While in the context of shape retrieval this seems to be a reasonable choice, it is

not possible to use the wave kernel signature in our mapping technique (Chap-

ter 4). One of the reasons for this is that the boundary of a patch has a too signif-

icant impact on points close to it. Thus, it performs poorly when distinguishing

between points lying on the same radius of a disk-shaped patch.

In this thesis, we aim for simple descriptor choices whenever possible. Later in

this chapter, we will use a descriptor assembled from the Gaussian, mean and

maximum curvature at three different scales and conduct a small experiment with

the wave kernel signature. In Chapter 4 solely the mean curvature at a fixed scale

will be used as a scalar descriptor to guide our inter-surface mappings.

3.2 A Bag-of-Features Approach

The bag-of-words model is a popular classification method originating in doc-

ument retrieval, cf. [MRS08]. In this model, text documents are solely repre-

sented by the unordered set of words they contain, including the frequency of

these words. Deliberately neglecting the structure of these words within the doc-

ument is key to the simplicity of the method and coins the term bag-of-words

for this representation. In addition, one considers a global list of discriminative

words for the entire document collection. This list is called the vocabulary. A

single document can now be classified by measuring how frequent each term of

the vocabulary appears in it. This measure can be seen as an activation histogram.

Consequently, documents with similar histograms are considered to belong to the

same class.

This concept has been adapted to image retrieval and is commonly used in

computer vision (see [PCI+07] for an example and [OD11] for a survey). Here,

the terms bag-of-visual-words or bag-of-features are often used interchangeably.

Instead of plain text, the representation of an image contains the values of some

local feature descriptor evaluated at multiple locations of the image. The vocabu-

lary now is a list of especially characteristic descriptor values. This list is usually

obtained in an offline process by a quantization of the descriptor space.

The same idea has been carried over to shape retrieval and classification. In

this section, we make use of the approach presented in [OBBG09]. This method

densely evaluates a shape descriptor at each point of a surface. All descriptor

values observed in the entire database are gathered in the descriptor space, which

is then divided into a fixed number of clusters. The cluster centers, i.e. espe-

cially representative descriptor values, are now called geometric words and form



20 Chapter 3. Patch Retrieval

the vocabulary. When computing the activation histogram of a single shape, its

descriptor values over the entire surface are matched to words of the vocabulary

using a soft assignment. The resulting activation histogram of a shape is then

called its bag-of-features.

Consider, for example, a point on the tip of a human nose. This point is char-

acterized by relatively high curvature, which might be reflected in the descrip-

tor value at that point. If the database contains a large number of human noses,

their points will form a cluster in the descriptor space and its center appears as

a geometric word in the vocabulary. When computing the bag-of-features, i.e.

activation histogram, for each shape, those containing a nose will exhibit a high

activation with respect to this word. The bag-of-features for e.g. a human eye

looks differently, as a different subset of geometric features has a high importance

for this shape. Thus, a distance between shapes can be computed by comparing

their histograms.

Vocabulary Generation

The goal of this step is to choose a vocabulary V of fixed size k = |V|, representing

the existing database as well as possible. We evaluate the descriptor of our choice

at all vertices of all shapes in the database and collect the resulting points in the

d-dimensional descriptor space. Thereafter, we perform a vector quantization of

this space using k-means clustering. The resulting cluster centers I0, . . . Ik−1 ∈
R

d form the vocabulary V . Each of these words is similar to a large number of

observed descriptor values and at the same time preserves a certain distance to

all other words of the vocabulary. Thus, we expect it to have the power to both

identify similar shapes as well as to discriminate between different shapes.

Since the classic k-means algorithm is inherently based on the Euclidean dis-

tance, we expect best results from descriptors having a meaningful embedding in

Euclidean space. In the special case of a one-dimensional descriptor, say the dis-

crete Gaussian curvature at a certain scale, the descriptor space is the real line. A

shape’s bag-of-features is then simply a histogram of its Gaussian curvature distri-

bution. However, it provides the additional convenience, that the location and size

of its—unequally spaced—bins is chosen automatically, according to the existing

data.

Bag-of-Features Computation

To generate the bag-of-features representation of a shape, we first consider each

vertex individually and compute its activation, also called feature distribution,

with respect to the vocabulary. In a second step, we integrate this distribution over

the surface.
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The feature distribution θ(v) ∈ Rk at a vertex v is the vector in which each en-

try measures how similar the respective word is to this vertex. Since we cannot ex-

pect a geometric word to match exactly, a soft assignment is used. In [OBBG09],

the similarity between the descriptor value I(v) at a vertex and a single word Ii is

defined as

θi(v) = exp

(

−
‖I(v)− Ii‖

2
2

2σ2
BoF

)

> 0. (3.1)

Here, a Gaussian kernel is used to turn the Euclidean distance between both de-

scriptor values into a similarity. This similarity measure takes the value of 1 for

a perfect match and approaches 0 as the distance increases. We will use the same

conversion in another context in Equation 4.6 where it is explained in more detail.

To obtain the feature distribution, these similarities are assembled into a vector

which is then normalized with respect to the L1 norm:

θ(v) =
1

∑

i θi
· (θ0, . . . θk−1)

T .

The global parameter σBoF controls the softness of the assignment. Larger values

of σBoF gradually increase the similarity of more distant descriptor values and,

due to the normalization of θ, lead to a softer assignment. In the limit σBoF → 0,

the entry of θ corresponding to the closest geometric word will approach 1, while

all others approach 0. The authors propose to choose σBoF as twice the median

distance between the cluster centers.

Finally, the feature distribution θ can be integrated over the surface to obtain

the bag-of-features Θ(P) for an entire patch P. Hence, we evaluate the sum

Θ(P) =
∑

v∈P

θ(v) · Av,

where Av is the surface area corresponding to vertex v. Two bags-of-features, e.g.

of a source patch S and a target patch T are then compared by their L1 distance:

distBoF (S,T) = ‖Θ(S)−Θ(T)‖1 .

This means that the activations of S and T with respect to each geometric word

are compared individually and their absolute differences are then summed up.

Spatial Sensitivity

The main reason for the simplicity of this method stems from the disregard of

any spatial relation between surface features. While being very convenient, the

loss of spatial relations at the same time presents the major disadvantage of these
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methods. Regarding again the example of a Gaussian curvature based descriptor,

it is possible to e.g. confuse a human nose with an entire human face, as both

might exhibit the same distribution of curvature values in their bags-of-features.

However, the spatial distributions of these values over the surfaces are different.

Therefore, the authors of [OBBG09] propose the following extension: Instead

of regarding single geometric words, all pairs of words are considered in relation

to their geodesic distance on the surface. Two words being important and spatially

close to each other lead to a strong activation of this pair. With growing distance,

the activation decreases. Thus, proximity is measured in both the descriptor space

and on the surface. Unfortunately, this approach leads to a quadratic run time in

the complexity of each surface patch. Furthermore, the authors only demonstrate a

mild improvement of the result quality. With this dissatisfactory trade-off in mind,

we do not employ this extension for our experiments, and leave improvements of

spatial sensitivity for future work (see Section 5.1.2).

Descriptor Space Normalization

Some descriptors used in our examples come with large differences in magnitude

among their dimensions. Furthermore, these dimensions are often independent

of each other. For example, this is the case if the descriptor is built out of dis-

crete curvature values observed at different integration radii. Due to increasing

smoothness, curvature magnitudes decrease with larger integration area. Since

the k-means clustering as well as the descriptor similarity defined above inher-

ently depend on Euclidean distances, some dimensions receive a higher weight

than others. We accommodate for this issue by normalizing the descriptor space

such that the standard deviation over the entire database equals 1 in each dimen-

sion.

3.3 Evaluation

After a bag-of-features method was applied to our setting in the previous section,

this section provides an evaluation on a small, manually created dataset.

Dataset

Our exemplary dataset contains 83 surface patches, manually extracted from laser

scans of humans. These scans are collected from two sources: The FAUST dataset

[BRLB14] and an as yet unpublished set of facial 3D scans. Our dataset con-

tains 8 shape classes in the following quantities: eye (18), nose (9), ear (10), foot

(10), face (9), arm (8), hand (10) and mouth (9). Examples of each class are
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Figure 3.1: The test dataset used for evaluation consists of 83 patches divided into 8
classes: eye, nose, ear, foot, face, arm, hand and mouth.

shown in Figure 3.1. Both right-hand and left-hand instances of the classes eye,

ear, foot, arm and hand are contained. However, no exact symmetries exist due

to slight asymmetries of the models, unsymmetrical triangulation and different

choices of patch boundaries. Patches from the FAUST dataset are used in the

authors’ “remeshed” triangulation, whereas meshes from our second data source

are decimated to between 200 and 2000 vertices. The patch boundaries are cho-

sen by manually selecting a center vertex and a geodesic radius. All boundaries

follow edge paths of the original mesh, i.e. no triangles are split. All patches are

normalized to have a geodesic radius of 1.

Descriptors

We perform experiments with the wave kernel signature (WKS) as well as a sim-

ple curvature based descriptor: Gaussian curvature, mean curvature and absolute

maximum curvature are computed at three scales (σ1 = 0.025, σ2 = 0.05, σ3 =
0.1) and then concatenated to a nine-dimensional descriptor. We refer to this de-

scriptor as CURV9. In addition, a two-dimensional descriptor is used solely for

illustration purposes: CURV2 consists of the mean curvature computed at σ2 and

σ3.



24 Chapter 3. Patch Retrieval

Figure 3.2: A random subsampling of 10 000 vertices within the dataset is plotted in the

two-dimensional descriptor space of CURV2 (blue colored dots). A quantization of the

space is performed using the k-means algorithm, 8 representatives, i.e. geometric words,

are identified (magenta colored dots).

Vocabulary Generation

Figure 3.2 visualizes the distribution of descriptor values in the 2D descriptor

space of CURV2. This descriptor has a meaningful embedding in Euclidean space.

Thus, k-means clustering yields a vocabulary that can properly represent a major-

ity of descriptor values.

Note that the roughly linear distribution in this example stems from the fact

that both dimensions describe relatively similar surface properties, which only dif-

fer by the slightly altered kernel size. However, this is not the case in general. For

example using CURV9, points with increasing maximum curvature could exhibit

increasing positive or negative Gaussian curvature as well as increasing positive or

negative mean curvature. Consequently, the distribution in the nine-dimensional

descriptor space is far from linear in general.

Using WKS, the distribution becomes even more complex in a 100-dimensional

space. As a result, a larger vocabulary size is necessary to adequately represent the

distribution. Moreover, the authors of the wave kernel signature [ASC11] propose

a relative difference measure to compare its values. Thus, it is not well embed-

ded in Euclidean space, which is necessary for the classical k-means algorithm.

The resulting inferior choice of the vocabulary might be one reason for the bad

performance of WKS as demonstrated later in this section.
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Figure 3.3: Each of the four histograms on the left visualizes the bag-of-features Θ for

the shape of the same color. The vocabulary (k = 8) is the one chosen in Figure 3.2 for

the CURV2 descriptor, and an assignment softness of σBoF = 1 is used here.

Bag-of-Features Representation

Sticking to the above example with a vocabulary size of 8 and the descriptor

CURV2, we computed the bag-of-features Θ for the four shapes obtained in Fig-

ure 3.3. The numbers 1 to 8 on the horizontal axis correspond to the geometric

words shown in Figure 3.2. Each bar shows how relevant a word is for the respec-

tive shape. It can be seen that the bags-of-features follow a general distribution

over a variety of shapes. In other words, we can see that some words, e.g. 3 tend

to be of higher importance in general than others, e.g. 1. This can be explained

by the example of relatively flat regions, which cover large parts of a majority of

patches in our database. The high general relevance of low curvature regions is re-

flected by the increased density of points around the origin in Figure 3.2. Still, the

differences between the bags-of-features of the depicted shapes are large enough

to distinguish between them.

Increasing the assignment softness parameter σBoF in Equation 3.1 smoothes

out both the general distribution of words over the entire database as well as the

differences between distributions of individual shapes. Yet, choosing an assign-

ment that is too hard promotes the following problem: roughly similar points can

be hard-assigned to different words and the information about their proximity is

lost. Finally, the L1 norm will yield a large difference between both histograms,

since all bins are compared individually. This problem is of particular relevance

if the number of words k is large.
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Figure 3.4: Multidimensional scaling of the bag-of-features distances distBoF(Pi,Pj) in

our dataset, using the WKS descriptor, k = 128, and σBoF = 11.

The authors of [OBBG09] choose σBoF relative to the distance of cluster cen-

ters in the descriptor space. In contrast to that, we can choose σBoF as a constant

since our descriptor spaces are normalized.

Discussion of Results

In a first experiment, the distance matrix between all patches in the database is

computed using the wave kernel signature. All parameters are tuned to achieve

the best results with this descriptor. Consequently, we chose a relatively large

vocabulary of size k = 128 and a rather soft assignment using σBoF = 11. The

resulting bags-of-features are points in a 128-dimensional space and we expect

patches of the same class to form clusters of low L1 distance in this space. At

the same time, the distance between multiple classes should be high enough to

discriminate them. Figure 3.4 visualizes this 128-dimensional space using multi-

dimensional scaling (MDS), i.e. distances between points are preserved as well as

possible in a 2D embedding.

Although, the figure shows shapes of the same class in roughly

similar positions, they do not form easily distinguishable clusters.

In addition, the arm class (see inset for a representative patch) is

scattered with unreasonably high distances. One possible expla-

nation for the bad performance of the wave kernel signature was

already given above, namely the potentially suboptimal choice of

geometric words due to the non-Euclidean metric.

Moreover, the wave kernel signature relies on representing the entire fre-

quency spectrum of a surface. While high frequencies are only affected by a small

neighborhood, low frequencies are influenced by large surface regions. This com-
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Figure 3.5: Multidimensional scaling of the bag-of-features distances distBoF(Pi,Pj) in

our dataset using the CURV9 descriptor, k = 128, and σBoF = 11.

bination of local and increasingly global information is a key property, rendering

the wave kernel signature a strong descriptor. In our setting however, global in-

formation is not present and the region of influence for a single point quickly

exceeds the patch boundaries. Therefore, the wave kernel signature—as a rep-

resentative for the entire family of spectral descriptors—cannot play its strength

when restricted to small surface patches with boundary. In particular, this explains

the unstable behavior with respect to the arm class (see inset) in Figure 3.4, as its

meshes contain up to no high-frequency detail and the discriminative power of the

WKS dissolves almost entirely.

As a consequence, we stick to simple descriptors based entirely on local cur-

vature. Now, the supporting region for a single surface point is given in direct

relation to the kernel size σcurv. We repeat the experiment with the same settings

but replace the WKS by the CURV9 descriptor and obtain pleasant results.

Figure 3.5 shows the results using CURV9. Most shape

classes form clear clusters and are well separated from each

other, apart from two exceptions. First, the nose class is scat-

tered into the face class. This demonstrates the typical weakness

of bag-of-features approaches, namely their disregard of spatial

relations. Both, faces and some noses seem to exhibit a similar

distribution of curvature values. If the position of these values is

not taken into account, it is plausible that a nose can be confused

for a head.

Second, the eye and mouth clusters are too close to each other

to clearly distinguish between them. This however is not surpris-

ing as their surfaces show very similar details and little discrimi-

nating geometric information exists in the first place (see inset).
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We keep the parameter choice from Figure 3.5 (CURV9, k = 128, σBoF = 11), and

further analyze the results. To do so, we in turn treat each patch as the query patch

and examine its nearest neighbors. When picking the single nearest neighbor of

each patch, the result belongs to the same class in 79 out of 83 cases. In the four

failure cases, the closest patch of the correct class is the 2nd, 3rd, 10th and 13th

nearest neighbor, respectively.

2 4 6 8 10 12 14 16 18 20

Number of Nearest Neighbors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n
 &

 R
e
c
a
ll

Precision

Recall

Figure 3.6: Precision and recall of our bag-

of-features implementation per number of

retrieved patches n.

Again, we regard each patch as

the query once and pick its n near-

est neighbors as the result set. For

evaluation, we count the items of the

confusion matrix: true positives (re-

trieved patches of the correct class),

false positives (retrieved patches of a

wrong class), false negatives (patches

of the correct class that were not re-

trieved) and true negatives (patches of

a wrong class that were not retrieved).

From these numbers, we can compute

precision and recall. Precision is the

ratio of correct patches within the n re-

trieved patches and recall is the ratio of

how many patches of the correct class

are actually retrieved. In Figure 3.6

both measures are plotted with respect to an increasing size n of the result set.

For example, it can be seen that retrieving four patches gives 90% results of the

same class on average and roughly 30% of the correct class are actually within the

retrieval set.

Timings

In our unoptimized MATLAB implementation, initializing the evaluation dataset

takes approximately 12 seconds on commodity hardware, while the lookup time

for a query is negligible.

In this chapter, one of many possible shape retrieval methods was adapted to our

setting. An evaluation shows that the bag-of-features approach using a simple

descriptor, built of a few curvature measures at different scales, yields satisfying

results. In future work, the method could be further improved by addressing its

major shortcoming, namely the indifference towards spatial relations (see Sec-

tion 5.1.2).
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Patch Re-Embedding

This chapter presents the main contribution of this thesis. It addresses the intri-

cate problem of re-embedding a successfully retrieved macro constraint on the

target surface. As such a macro constraint is defined on a surface patch which has

similar but not identical geometry to the target surface, this re-embedding step is

not straightforward. Naı̈ve solutions, such as rigidly aligning both surfaces in 3D

and employing a simple projection, provide insufficient results. This is because

geometric differences are not accommodated for in a controlled fashion and an

arbitrary number of artifacts is possible. Imagine, for example, two human faces

being rigidly aligned to each other, both exhibiting subtle differences in the rela-

tive position and size of geometric features. Projecting constraints from one sur-

face to the other using e.g. normal piercing or nearest neighbor correspondences,

yields critical disadvantages: (1) geometric features might not exactly correspond

to each other; (2) in highly curved regions, such as ears, the mapping is likely

to become discontinuous and non-injective; (3) the mapping lacks a general no-

tion of smoothness; and (4) it is essentially restricted to patches which are rigid

transformations of each other.

Inter-Surface Mappings

For a constraint transfer that is free from the above limitations, we strive to com-

pute a continuous map between the source and the target surface. This map, which

can also be interpreted as a field of dense point-to-point correspondences, can then

be used to transfer a broad range of information between the surfaces. In fact, it

is widely agnostic to the type of constraints being mapped. Especially, it allows

to transfer smooth fields, for example containing sizing constraints.

To keep the setting relatively simple, we maintain the restrictions already em-

ployed in the previous chapters. In particular, we compute a mapping between a

source and a target patch, both being geodesic discs with a single boundary. Thus,

29
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we choose to ignore existing target geometry beyond the boundary of the user-

selected target patch. This assumption could be relaxed in future work. Moreover,

we cannot expect the boundaries of both patches to exactly match each other—a

presumption made in a variety of existing methods. Hence, we only aim to com-

pute a mapping between the “common parts” of both patches.

In order to address the alignment of geometric features, i.e. problem (1), we

choose a descriptor guided approach. This means that a surface descriptor is com-

puted on both patches, and the desired mapping is sought to align surface regions

with similar descriptor values.

The continuity of the resulting inter-surface map will be given by the design

of our method. Further, injectivity constraints as well as distortion measures can

be explicitly formulated in our setting. Choosing a smoothness measure involves

the following question: which kinds of distortion do we expect in our mappings

and which ones should be penalized? A common path taken in the literature is

to optimize for low isometric distortion. However, our method should eventually

be able to transfer constraints between patches of moderate geometric differences

beyond isometries. Consequently, we cannot expect this goal to be reached. To

allow more degrees of freedom in our map, we aim for the slightly weaker notion

of conformality. A conformal, i.e. angle preserving, map allows for an isotropic

scaling factor at each point. This gives a map more flexibility to adjust to scale

differences of local features.

Although good descriptor matches and low distortion often coincide, they are

different concepts and have to be balanced against each other. For example, situ-

ations exist in which permitting a slight increase in distortion allows for a signifi-

cant improvement of descriptor distances, and vice versa.

Optimization Setting

We observe that the degrees of freedom in the problem at hand are inherently two-

dimensional: consider a point on the source patch which is mapped to a specific

position on the target patch. Now, altering the inter-surface map means moving

this point to a different location on the target surface. Despite the 3D embedding

of this surface, the point can only be moved in two dimensions. Due to this fact,

we choose to approach the problem in a 2D parametrization space. In this space,

point-to-point correspondences are trivially given by points lying at the same 2D

location if the parametrizations are injective. As an additional benefit, this set-

ting allows to find the “common part” of both patches in a natural way, without

formulating an additional optimization problem.
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Alternative Approaches

A different class of methods aims to solve the problem directly in its three-dimen-

sional embedding space. Here, a non-rigid alignment is computed by deforming

the source surface until it matches the target. Correspondences are then found by

points located at the same 3D position. Although this approach initially seems at-

tractive, formulating both distortion and injectivity measures in three dimensions

is substantially less straightforward than in 2D. Furthermore, the non-rigid reg-

istration process itself is intricate: similar to rigid registration it carries a cyclic

dependency between improving an intermediate alignment and updating a set of

tentative correspondences.

Another family of methods approaches the problem using a purely discrete

optimization. For example, correspondences between two sets of points can be

found by solving a labeling problem. This however bears the challenge of first de-

termining appropriate point sets on both surfaces, as unequal numbers of elements

prevent a one-to-one matching. Smoothness of the resulting correspondence field

is often encouraged by rewarding neighboring points of the source set for choos-

ing neighboring correspondences on the target surface. This kind of problem is

often expressed in a probabilistic model, e.g. by a Markov random field. Again,

explicit control over the distortion of the induced map is not easily given.

Outline

In this chapter, we start by finding a suitable problem formulation in a continuous

setting (Section 4.1). For some parts of the problem, different alternatives are

discussed. Afterwards, we discretize all relevant expressions and examine their

first derivatives (Section 4.2). Finally, a first approach towards optimizing the

resulting non-linear, non-convex objective function is presented (Section 4.3) and

the involved challenges are discussed in detail. Finally, an experimental evaluation

is given (Section 4.4).

4.1 Problem Formulation

We are given a source patch S and a target patch T. Both are two-manifold,

simply connected surfaces with single boundary ∂S and ∂T, respectively. We are

searching for an inter-surface mapping Φ (see Figure 4.1).

Both patches are assumed to contain similar geometry, but their boundaries

are not expected to exactly match each other. Thus, we only consider a partial

map between subsets S′ ⊆ S and T′ ⊆ T. Points in either S′ or T′ are said to lie

in the overlapping region. Now the desired mapping is defined as Φ : S′ → T′,

where in addition to the map Φ itself, both S′ and T′ are unknown.
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The primary objective of our optimization is to map points to geometrically

similar locations. A measure for this similarity is provided by pointwise surface

descriptors on both patches and a descriptor distance function d(p, q) ≥ 0 for

p ∈ S, q ∈ T. Hence, we want Φ to minimize this distance for all corresponding

points in the overlapping region:

objdescr =

∫

S′

d (p,Φ(p)) dA → min . (4.1)

We design our optimization to be invariant to the choice of a descriptor, as long as

d(p, q) is densely available, that is for all pairs of surface points.

The objective 4.1, with its variables encoded in Φ, already is a non-linear, non-

convex function, potentially having numerous local minima. To see this, consider

a point p ∈ S′ and its correspondence q = Φ(p) ∈ T′. Following a line through

the solution space of the problem, q describes a path on the target surface along

which the descriptor distance to p can increase and decrease arbitrarily.

4.1.1 Parametrization Setting

The degrees of freedom in Φ are continuous and two-dimensional: namely for

each point p, its correspondence q can be moved over the target surface. However,

the fact that the domain S′ is unknown poses an additional challenge. Having to

choose whether a correspondence for p exists or not, i.e p ∈ S′ or p 6∈ S′, adds

binary degrees of freedom to the problem.

Fortunately, our restriction on S and T to have disk topology, allows for an

intuitive formulation using parametrization and deformation, that covers all de-

grees of freedom in a single, two-dimensional domain. In a nutshell, our setting

is the following: (1) we parametrize both patches S and T to the unit disk Ω in

R
2, (2) while the disk of the target patch stays fixed, we compute a continuous

2D deformation of the source disk. After this deformation, the overlapping part

between both 2D shapes defines S′, and correspondences are trivially given by

points lying at the same 2D location. See Figure 4.1 for an illustration.

More formally, the parametrizations f : S → Ω and g : T → Ω map each

point from the respective surface to the unit disk Ω ⊂ R
2, i.e. a subset of the

plane. Many techniques for this step are available. For the sake of simplicity,

we start by using harmonic parametrizations and constrain the boundary of the

respective patch to the unit circle. Both f and g can be computed such that they

are guaranteed to be bijective, cf. [Tut63] and [Flo03].

The continuous 2D deformation applied to the source parametrization is called

φ : Ω → R
2. All degrees of freedom for our optimization are now encapsulated

within the choice of φ.
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Figure 4.1: Correspondences between subsets of the surfaces S and T are computed via

an intermediate parametrization domain. First, S and T are both mapped to the unit disk

Ω by f and g. After that, the disk belonging to S is deformed by a map φ in 2D. Finally,

the overlap of both shapes defines the partial inter-surface map Φ.

Finally, we can define the desired inter-surface map as the composition

Φ = g−1 ◦ φ ◦ f .

Thus, a single point from the source patch is first mapped to the plane by f , then

re-located within the plane by φ and eventually lifted to the target surface by g−1.

If a point lies outside the unit circle after the deformation was applied, it cannot be

lifted to the target and is thus not contained in S′. The target region T′ is defined

to be the subset of T for which an overlap with the deformed 2D shape exists, i.e.

T′ = g−1 (φ(Ω) ∩Ω).

4.1.2 Map Distortion

Each of the three maps introduces its own distortion. Especially harmonic parame-

trizations as used for f and g are known to exhibit high area distortion. Typically,

areas close to the boundary are stretched when mapped to the parameter domain,
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while areas towards the center or with high Gaussian curvature can exhibit ex-

treme shrinkage. Consequently, it is important to regard the metric induced by

both f and g during the optimization. For example, moving a correspondence by

a small distance in the parameter domain can have very different effects. Close to

the boundary, the change in the overall result might be negligible, while it might

be extreme if the same movement is performed close to the center of the disc.

Similar differences can be observed for angular distortion, which tends to become

high in the proximity of the boundary.

While f and g stay fixed, φ changes during the optimization. When φ is ini-

tialized as the identity, the optimization gradually deforms the planar unit disk Ω

and thus builds up additional distortion. Although the distortions of f and g show

similar characteristics, they are not the same for two reasons: (1) the correspond-

ing 3D surfaces are not the same and have to undergo some geometric deformation

to be morphed into each other; and (2) we don’t require the boundaries of both

patches to match. For example, a shared geometric feature might lie at the center

of one disk but slightly off-center in the other disc. Hence, both features are likely

to be distorted differently.

For these reasons, we are not only interested in the distortion introduced by φ,

but in the distortion of the entire composition Φ = g−1 ◦φ ◦ f . In fact, increased

distortion in φ can accommodate for differences between f and g, and thus reduce

the overall distortion in Φ.

Singular Values of the Jacobian

While the functions f , φ and g map points from one do-

main to another, their differentials do the same with tangent

vectors. Imagine an orthonormal tangent frame with axes

u and v at a point on S. When mapped to the plane, this

tangent frame gets distorted by a linear transformation, i.e.

scaled, rotated and sheared (see inset). This transformation

is represented by the the Jacobian matrix

Jf =
[

∂f

∂u

∂f

∂v

]
,

which exists at each point on S. The same definition applies

to Jφ and Jg. As the domain of Jφ is two-dimensional, the

choice of a tangent frame is particularly simple, e.g. using

the Cartesian coordinate axes. Technically, Jf and Jg map between 2D and 3D

vectors, giving us Jacobian matrices in R2×3. However, since we only consider

3D vectors living in the tangent space of a surface, we can always express them

locally in a tangential 2D coordinate system. Thus, we write Jf ,Jφ,Jg ∈ R2×2.
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Figure 4.2: The singular value decomposition separates the Jacobian JΦ into a rotation

U , an anisotropic scaling Σ and another rotation V T .

Since we are interested in the distortion of the entire map Φ, we now regard

the composition JΦ = J−1
g ◦ Jφ ◦ Jf . Due to the linearity of the Jacobian, this is

simply the matrix multiplication

JΦ = J−1
g · Jφ · Jf .

The linear distortion of our map is completely characterized by this 2 × 2 matrix

at each point. Yet, it carries some additional information we are not interested in:

namely its rotational part, as the mere rotation of a local frame does not add any

distortion. Moreover, having to choose a tangential coordinate system for each

point actually adds an arbitrary rotation to its Jacobian.

Numerous distortion measures based on the Jacobian have been introduced in

the literature. The most popular family of measures examines its singular value

decomposition JΦ = UΣV T (e.g. [DMK03], [HG00], [SCGL02], [APL14]).

Here, the Jacobian is split into two 2D rotations U and V T and an anisotropic

scaling by the singular values

Σ =

[
Γ 0
0 γ

]

with Γ ≥ γ, see Figure 4.2. Now these singular values can be combined into a

single distortion measure. If Γ = γ = 1 at every point, the map is isometric, as no

length distortion exists. If Γ and γ take the same value α, not necessarily 1, the

map is conformal. This means that both axes are scaled uniformly and thus angles

cannot change. Still, length distortion is possible, since the local scaling factor α
can vary over the surface.

In a majority of cases, we will not be able to find an isometric mapping, be-

cause we do not expect our surfaces S and T to be isometric deformations of

each other. A conformal mapping however is always possible as long as we are

working in a continuous setting. The uniformization theorem states that a simply

connected surface with boundary can always be conformally mapped to the unit

disk [Kee13]. Applying this statement to f and g, and setting φ to the identity,
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shows that a conformal map Φ exists. Yet in practice, we have to work with dis-

cretized surfaces for which the theorem does not hold. Therefore, we can just aim

to minimize conformal distortion.

Among others, [DMK03] suggest to use the measure Γ
γ

for conformal distor-

tion. If the mapping is perfectly conformal in a point, this ratio is 1 and it grows

as the relative difference between both singular values increases. Although it is

easy to compute this measure, it is harder to directly optimize for it. The central

problem is that this objective depends on the singular values of a 2 × 2 matrix.

Closed form expressions for these values exist (e.g. [Bli96], [SCGL02], [SS15],

[Lip12]) but they are non-convex. Since our method cannot guarantee to give an

initial solution close enough to the optimum, there is a risk of getting stuck in lo-

cal minima. [Lip12] propose a convex formulation to strictly bound Γ
γ

at the cost

of cutting away valid parts of the solution space. In our setting however, it is more

beneficial to minimize the overall distortion than to adhere to explicit bounds.

Several other measures based on the singular values have been proposed, e.g.
Γ
γ
+ γ

Γ
[HG00], max(γ, 1

Γ
) [SCGL02] or

√

γ2 + Γ−2 [APL14]. All these measures

describe different combinations of isometry and conformality and are of varying

difficulty to optimize for.

To avoid additional issues arising from these more involved distortion mea-

sures, we use a well-known approximation to conformality, which is both easy to

derive and simple to optimize for.

Least-Squares Conformal Maps

A very popular approximation to conformality, are least-squares conformal maps,

introduced in [LPRM02]. While the approach is originally used to map a disc-like

surface to the plane, we can apply the same concept to the inter-surface map Φ.

Regard again an orthonormal tan-

gent frame at a point on S′. When

mapped to T′, we would like both vec-

tors to still be orthogonal and of equal

length, as this implies conformality.

Choosing a tangential coordinate sys-

tem (u, v) on S′, its coordinate axes get

mapped to ∂Φ
∂u

and ∂Φ
∂v

∈ R2 on T′, also expressed in a local coordinate system.

Rotating ∂Φ
∂v

by 90° counter-clockwise gives us ∂Φ
∂u

if the map is conformal at this

point. If this is not exactly the case, the difference between both vectors measures

how far the map is from being conformal (see inset). This measure is then min-

imized in a least-squares sense. Thus, we measure the conformal distortion of Φ
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at a point p as

lscmΦ(p) =

∥
∥
∥
∥

∂Φ

∂v
− Rot90

∂Φ

∂u

∥
∥
∥
∥

2

and seek to minimize ∫

S′

lscmΦ(p) dA.

When used in the original parametrization setting (surface to plane), the least-

squares conformal maps term is convex and quadratic. Furthermore, its minimum

is invariant to similarity transformations, i.e. scaling, rotation and translation, in

parameter space. For this reason, one usually fixes two points of the map to obtain

a unique minimum. This minimum can then be found by solving a single linear

system.

In our setting however, the conformality measure is not based on the Jacobian

of a single map, but on the composition JΦ = J−1
g · Jφ · Jf . Consider a single

point v on S′. For this point, the Jacobian of the first map Jf is always constant.

The Jacobian of the second map Jφ is not constant, as it contains the variables

of our problem. Moving around the variable point φ(v) in the parameter domain

clearly changes Jφ. So far, the least-squares conformal maps term still exhibits

its original properties, since its variables are just multiplied by a constant matrix.

Finally, we also take the last Jacobian J−1
g into account. This Jacobian is picked

at the point on the target patch corresponding to φ(v). Since moving φ(v) around

changes this point, the Jacobian J−1
g is picked at varying locations. Unfortunately,

J−1
g can take arbitrary values at different locations. Thus, the variables of the

least-squares conformal maps term are multiplied by arbitrarily changing values.

For this reason, the least-squares conformal maps term is no longer quadratic nor

convex in the variables of our problem. This is why we cannot directly solve for

its minimum but have to fall back on non-linear optimization techniques.

Moreover, there is no need to fix two correspondences, as the other parts of

the objective serve as a regularization.

Note that the above integral only covers S′, as Φ is solely defined on this domain.

In order to rate a single instance of Φ this is sufficient, since Φ does not depend

on the remaining part of S. During the optimization however, the entire parame-

trization of the source patch is deformed and points can freely move in and out

of the overlapping region. Therefore, it is important that points in S \ S′ are also

moved reasonably during the optimization process. Because g−1 is not available

for these points, we cannot use the same distortion measure. Instead, we ignore

the constant distortion of f as well as the non-existing g−1, and simply apply our

measure to the 2D deformation φ:

lscmφ(p) =

∥
∥
∥
∥

∂φ

∂v
− Rot90

∂φ

∂u

∥
∥
∥
∥

2

.
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In total, we seek to minimize the following conformal distortion objective:

objlscm =

∫

S′

lscmΦ(p) dA +

∫

S\S′

lscmφ(p) dA. (4.2)

Both terms are integrated using the area element dA of the original 3D embedding

of the surface S.

4.1.3 Injectivity

To be able to consistently map information from the source to the target surface,

the mapping Φ should be injective. Otherwise, information from multiple source

points will be mapped to the same target location, which might be problematic.

Recall that both surface maps f and g to the unit disk are guaranteed to be

bijective. If we can compute a deformation φ that is injective, it follows that the

entire mapping Φ is also injective. Since we set the co-domain of Φ to its actual

range T′, it is also surjective by definition. Hence in total, injectivity of φ will

lead to a bijective map Φ.

In the following, we will distinguish between local and global injectivity. Lo-

cal injectivity means that, in an infinitesimal neighborhood around each point, the

map is free of fold-overs. Whereas global injectivity is given if the boundary of

the source patch does not intersect itself.

Local Injectivity

Similarly to the discussion of distortion in Section 4.1.2, local injectivity can be

characterized by the Jacobian of a map. Now however, we can restrict our obser-

vations to the deformation φ.

The Jacobian Jφ shows how vec-

tors in the parameter domain Ω are af-

fected by the deformation. Local injec-

tivity is given when these vectors pre-

serve their order in each point. This

condition can be checked by picking

two vectors spanning a positive area

in Ω and making sure that this area

stays positive under φ (see inset). If we pick the normalized coordinate axes

u = (0, 1)T and v = (1, 0)T as our vectors, their images are the columns of the

Jacobian Jφ =
[

∂φ

∂u

∂φ

∂v

]
. The area of u and v is 1, whereas φ(u) and φ(v)

span a parallelogram of signed area detJφ. Thus, we would like to enforce the

constraint

detJφ > 0
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at all points in S. To stay within the realm of unconstrained minimization, we

employ the barrier function

− log (detJφ)

instead. If the area detJφ is sufficiently positive, the term yields a result reason-

ably close to 0. However, as the area approaches 0, the term explodes and gives

extremely high numbers, quickly approaching ∞ in the limit detJφ → 0.

Although, the logarithm increases very slowly for arguments far enough from

0, the term still pursues infinite growth of φ(Ω). Moreover, it yields negative

values for detJφ > 1. We therefore clip negative values to 0 and thus obtain a

function with local support:

max (0,− log (detJφ)) .

0 sf 1

0

2

4

6

max (0,− log (detJφ/sf ))

detJφ

The support of this modified barrier

starts at detJφ = 1, i.e. in the area pre-

serving case. Now, area growth is nei-

ther encouraged nor punished, while

slight area shrinkage is still penalized.

To work around this issue, we move

the starting point of the support from

1 to a different location closer to 0.

This is done by introducing a scaling

parameter sf ∈ (0, 1]. The parameter

sf now defines the value of detJφ at

which the barrier function starts hav-

ing an effect (see inset):

max (0,− log (detJφ/sf )) .

Finally, given a feasible initial solution, we can guarantee local injectivity by

adding the term

objflip =

∫

S

max (0,− log (detJφ/sf )) dA (4.3)

to our objective function. Notice that by choosing S as the integration domain, we

also enforce this condition in the non-overlapping part of the source surface. This

allows S′ to grow freely during the optimization without hitting any non-injective

elements from S \ S′.
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Global Injectivity

To achieve global injectivity of φ, and thus of Φ, the

boundary has to stay free of self intersections (see inset).

Depending on the purpose of the mapping, this property

might not strictly be necessary. In fact, we do not include it

in our final objective. Still, we discuss two possible options

to address the issue here.

The challenge in guaranteeing an intersection-free

boundary arises from the global nature of this constraint, as it prescribes relations

between all pairs of boundary points. In [SS15], the following barrier function is

set up for all boundary points p and edges e:

max

(

0,
ε

dist(p, e)
− 1

)2

.

If p is within distance of ε of the boundary edge e, the fraction will become larger

than 1, resulting in a positive function value. As the point approaches the edge, the

barrier approaches ∞. Outside of the region defined by ε, the function is clipped

to 0.

Despite the number of barrier functions being quadratic in the size of the

boundary, they can still be evaluated quite efficiently due to their local support.

Using a 2D acceleration structure, the small subset of pairs (p, e) potentially hav-

ing an effect on each other can be found quickly.

In our setting, another very simple option to guarantee global injectivity is con-

ceivable. Since both surfaces are geodesic discs containing similar geometry, we

do not expect the deformation φ to dramatically change the shape of the unit cir-

cle. In particular, we can restrict the space of deformations to those that maintain

its convexity. Fortunately, this constraint can be formulated locally, by restricting

the signed curvature κ of the boundary curve of φ(Ω) to positive values. We use

the same concept of a log-barrier function as we did for local injectivity:

objconvex =

∫

∂S

max(0,− log (κ/sc)) dl. (4.4)

Again, the parameter sc defines the value of κ at which the function starts to have

an effect. The curvature of the unit circle is 1/r = 1 at each point, thus sc should

be set to a small value in (0, 1]. We integrate the barrier function over the boundary

curve using the length element dl of ∂S.

Although being effective, this constraint is a very conservative measure for

global injectivity and cuts off large parts of the solution space. As we do not

observe problems with respect to global injectivity in our examples, we do not

add this term to the objective function used in our experiments.
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4.1.4 Sufficient Overlap

So far, combining Equations 4.1, 4.2 and 4.3, i.e. objdescr,
objlscm and objflip, to a single objective describes almost all of

our desired properties. However, there is still one caveat. The

global optimum is a solution with no overlap between the two

patches at all, i.e. S′ = T′ = ∅. This is because objdescr and

objlscm penalize errors integrated over S′ and there is no reward

for S′ maintaining a certain size.

Several approaches to introduce this reward into the opti-

mization target are imaginable. A measure for the amount of overlap is simply

given by
|S′|
|S|

∈ [0, 1]. Here |S| and |S′| denote the original surface areas in 3D.

The inset shows the image of S′ in the parameter domain.

Penalty Factor

A first idea is to multiply parts of the objective function by the reciprocal of this

fraction, i.e.

obj =
|S|

|S′|
· (objdescr + objlscm) + objflip,

and choosing obj = ∞ if |S′| = 0. In the case of maximum overlap, |S′| = |S|,
the total objective value stays unaltered. As |S′| decreases, objdescr and objlscm
are multiplied with increasingly larger factors. This favors solutions with higher

integrated penalty energies to become the global minimum if the overlap is suffi-

ciently large. It can already be seen, that there is a natural trade-off between low

penalty energies and large overlap. However, finding a universal balance between

both sides is not very intuitive in the above formulation.

Overlap Barrier

Provided with the insight that at least one parameter has to be involved to control

this balance, we can come up with a different formulation. We now give this

parameter a very simple meaning. Namely, the minimum amount of overlap we

want to achieve. Thus, we further restrict the solution space to mappings providing

an overlap larger than a prescribed ratio:
|S′|
|S|

> ro. Again, we can employ a log-

barrier function:

objoverlap = max

(

0,− log

( |S′|
|S|

− ro

so − ro

))

. (4.5)
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As the difference
|S′|
|S|

− ro approaches 0, the barrier function grows infinitely.

Negative values are again clipped to 0. The denominator so − rA defines the

characteristic of the curve. Like in all our barriers function, so ∈ (rA, 1] moves

the point at which the support of the function begins. If so is chosen as 1, the

barrier is always active, pushing the solution towards larger overlap. If so is close

to ro, the barrier prevents further shrinkage of the overlap only in the last moment.

In this short section, we mentioned two possible ways, out of many, to relocate

the global optimum. For both ones, failure cases can be easily imagined. On

the one hand, there can be cases in which the global optimum still exhibits less

overlap than the expected solution, because it avoids slightly higher descriptor or

distortion penalties. On the other hand, giving too much weight to large overlap

might prevent solutions in which slightly less overlap is in fact appreciated.

Therefore, an alternative approach is proposed in the next section. This ap-

proach does not try to cut off the undesired global optimum, but instead chooses

an initialization that is close enough to a more desirable local optimum.

4.1.5 An Alternative Descriptor Objective

A general approach in non-linear optimization is to find a good initial guess of a

solution and then descend into a close-by local minimum. We strive to find such

an initialization by first solving a simpler problem. More precisely, we restrict

φ to rigid transformations in 2D. This means that the source disk f(S) can be

translated and rotated in R2 until a good alignment with the target disk g(T) is

found. From this initialization, the non-linear deformation process is started.

Here, an alternative optimization target for this rigid 2D alignment is pre-

sented, which avoids the issues described in the last section.

In this restricted setting, the formulation of an objective becomes significantly

simpler. Fist of all, injectivity is not issue, as it cannot be violated by rigid trans-

formations. In addition, we choose not to care about the distortion of the induced

map Φ yet. Therefore, the only remaining aspects are descriptor distances and the

size of the overlap. We can now focus on merging these two concepts into a single

objective without having to perform any balancing.

The core of the problem at hand is that descriptor distances for existing cor-

respondences are penalized, but non-existing correspondences are not taken into

account. In other words, they are penalized with distance 0, which clearly en-

courages fewer correspondences. Choosing a value other than 0 for non-existing

correspondences brings us back to the above balancing problem.

Instead, we would like to invert our measure, and turn descriptor distances

into a descriptor matching score. This score should be 0 if there is no correspon-
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dence, close to zero if there is a bad correspondence, and approach 1 for a perfect

correspondence. In this formulation, maximizing the matching score solves both

problems at once: (1) points with similar descriptor values are aligned, because

they increase the total score; and (2) the overlap does not become too small, be-

cause the total score can only increase in the overlapping region.

0 σ 2σ 3σ

0

0.5

1

d(p, q)

sc
or
e(
p,
q)

Unfortunately, the types of de-

scriptor distances we want to allow are

not bounded from above. This means,

that we have to map the unbounded

interval [0,∞) to the bounded inter-

val (0, 1]. However, the problem of

turning distance measures into similar-

ity measures is well studied (see e.g.

[VTS04]). One way to achieve such a

conversion is to use a Gaussian kernel,

as shown on the right:

score(p, q) = exp

(

−
d(p, q)2

2σ2

)

. (4.6)

A descriptor distance d(p, q) = 0, i.e. a perfect match, gives the maximum score

of 1. If the distance increases, the similarity score(p, q) decreases and approaches

0 in the limit d(p, q) → ∞. How quickly the function approaches 0 is controlled

by the parameter σ. We choose σ to be the standard deviation of all points from

both surfaces in the descriptor space, with respect to the distance function d. The

case of non-existing correspondences is added by defining:

scoreΦ(p) =

{

score (p,Φ(p)) p ∈ S′

0 p 6∈ S′.

Finally, we end up with the following very simple objective for the rigid initial-

ization phase:

objinit =

∫

S

scoreΦ(p) dA → max . (4.7)

Having found a good rigid transformation φ maximizing this objective, we can

proceed by minimizing our original objective composed of objdescr, objlscm and

objflip using a non-linear deformation.
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4.2 Discretization and Derivatives

So far, all expressions were derived in a continuous setting to allow for a higher

level of abstraction. This section discusses the details of how to actually evaluate

our objective function in a discrete setting. In Section 4.3, the objective will be

optimized using a gradient descent based method. For this reason, first derivatives

of the relevant terms (objdescr, objlscm and objflip) will also be discussed here.

Surface Meshes

Both surfaces are represented by triangle meshes S = (VS,ES,FS) and T =
(VT,ET,FT), with sets of vertices V, edges E and faces F, respectively. The

words triangles and faces are used interchangeably. Each mesh comes with an

embedding into the three-dimensional Euclidean space, defined per vertex v ∈ V

and linearly interpolated over edges e ∈ E and triangles t ∈ F. For convenience,

mesh elements are also addressed by v, e or t ∈ S or T. Each triangle has a

local orthonormal coordinate system with basis vectors eu and ev. The positions

of triangle corners a, b, c ∈ V, expressed in a local coordinate system or in the

plane, are denoted a, b and c ∈ R2. A surface point p lying within a triangle is

expressed via its barycentric coordinates p = αa+βb+γc, where γ = (1−α−β).
We enumerate the one-ring neighborhood of a vertex a ∈ V using the notation

(b, c) ∈ N(a), where a, b, c form the triangles incident to a in counterclockwise

orientation. Alternatively, we address incident triangles directly using t ∈ N(a).
The area of a triangle in its original 3D embedding is denoted At or Aabc.

Furthermore, we define the vertex area Av to be 1/3 of the triangle area sum in

the one-ring of v.

Map Representation

The mappings f , g and φ can be represented by simply assigning a pair of scalar

coordinates (u, v) to each vertex of the respective mesh, i.e. we have f : VS →
R

2, g : VT → R
2 and φ : VS → R

2. All these maps are piecewise linear,

which means that a point within a triangle can be mapped using its barycentric

coordinates, e.g. f(p) = αf(a) + βf(b) + γf(c).
Consequently, the inter-surface map Φ can map barycentric coordinates in a

triangle of S′ to barycentric coordinates in a triangle of T′. It is constructed by the

composition of f , φ and g−1. More precisely, mapping a point p from S′ to T′

works as follows: (1) p is expressed via barycentric coordinates within its triangle

(a, b, c) in S′. (2) a, b, c are first mapped to the plane by f . (3) The images of a, b, c
and then relocated using φ. By evaluating the same barycentric coordinates here,

the image of p is found as a point in R2. (4) A triangle lookup with respect
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Figure 4.3: The piecewise linear map Φ transfers points from the source to the target

mesh via barycentric coordinates. (Green) When the vertices of a triangle are mapped

to the parameter domain by f and relocated by φ, a point within the triangle keeps its

barycentric coordinates. (Blue) To lift the point to the target surface, it first has to be

re-expressed by its barycentric coordinates within a target triangle.

to the target mesh is performed in parameter space and the point is re-expressed

by a different set of barycentric coordinates within this target triangle. (5) The

newly acquired barycentric coordinates now also define the final 3D location of

the mapped point Φ(p) on T′. The process is illustrated in Figure 4.3.

Finally, the map Φ constructed this way is also piecewise linear, however not

in the triangulation of S′ but with respect to the mesh constructed by intersecting

S′ and T′ in the parameter domain.

Acceleration Structure

The triangle lookup in step (4) is sped up using a 2D acceleration structure. Since

the parametrization of the target mesh is bounded within [−1, 1]× [−1, 1], we can

simply employ a uniform grid. Each grid cell of this grid contains a list of its

intersecting triangles. When a query is made for a point p, its corresponding grid

cell is looked up and then linearly searched for the triangle p actually lies in.

Note that this structure has to be initialized just once, as it only depends on the

constant map g. We choose the number of grid cells proportional to the number

of vertices in T. Assuming a uniform distribution of vertices in parameter space,

this enables constant-time lookups.

Variables

The discrete variables of our optimization problem are the pairs of (u, v) coordi-

nates defining the map φ. Our variable vector x is simply the concatenation of all

these coordinates, i.e.

x = [u0, v0, . . . un−1, vn−1]
T ∈ R2n,

with n = |VS|.
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During the optimization, we will have to evaluate obj(x) as well as its gradient

with respect to x. For a fixed x, this gradient is a vector in the solution space R2n

and we refer to it by

∇ obj =
[

∂
∂u0

obj, ∂
∂v0

obj, . . . ∂
∂un−1

obj, ∂
∂vn−1

obj
]T

∈ R2n.

An intuitive interpretation is possible by regarding individual pairs of entries

[ ∂
∂u

obj, ∂
∂v

obj]T ∈ R
2. Each pair represents a 2D vector per variable vertex

in the parameter domain. The direction of this vector shows how to move the

vertex in order to maximally increase the objective value.

4.2.1 Descriptor Distances

Before starting the optimization, a descriptor type and its parameters have to be

chosen. Then, the descriptor values I(v) are precomputed for each vertex in both

S and T. Moreover, we are provided with a distance function d, that can be

defined in different ways, depending on the descriptor type (cf. Section 3.1).

This distance function can easily be evaluated between two vertices from S

and T respectively. However, during the optimization, distances between a ver-

tex from S and an arbitrary surface point on T have to be computed. Thus, the

question is how to compute the distance d(v,Φ(v)) where Φ(v) is defined by

barycentric coordinates.

Figure 4.4: The descrip-

tor distance between a source

vertex (center) and three tar-

get vertices is linearly inter-

polated within a target trian-

gle. The gradient with re-

spect to the position of the

source vertex is shown as a

black arrow.

One possible option is to linearly interpolate the

descriptor values I(a), I(b) and I(c) within each tri-

angle of T. This way, I is densely available and

distances can be computed for each point within a

triangle. Finding a gradient of this distance within

the triangle however is more difficult as it involves

derivatives of the distance function. Since we wish

to treat this function as a black box, we choose a dif-

ferent approach.

Considering a single vertex v of the source mesh,

we can compute the distance to all vertices on the tar-

get mesh. These distances now form a scalar field on

T. Although for each vertex v ∈ S such a scalar

field over the entire mesh T exists, we only have to

consider it locally. We are solely interested in its val-

ues at the triangle corners corresponding to Φ(v), i.e.

d(v, a), d(v, b) and d(v, c), with a, b, c ∈ VT. These

distances can now be linearly interpolated within

the triangle (see Figure 4.4). The result is just a
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different—however not equivalent—approximation than first interpolating the de-

scriptor values and then computing distances. Fortunately, this new approximation

comes with a very simple gradient. Because the distance field from v to a target

triangle is linear, this gradient is constant within the triangle. Therefore, we define

d(v,Φ(v)) =
[
α β γ

]





d(v, a)
d(v, b)
d(v, c)



 ,

with α, β and γ being the barycentric coordinates of Φ(v) in the target mesh. The

gradient with respect to the unknown φ(v) within the target triangle is then

∇d (v,Φ(v)) =
1

2At

[
e⊥a e⊥b e⊥c

]





d(v, a)
d(v, b)
d(v, c)



 ∈ R2,

where e⊥a , e⊥b and e⊥c are the edge vectors opposite to vertices a, b and c rotated

by 90° counterclockwise (see e.g. [LPRM02]). Now our discrete equivalent of the

descriptor objective in Equation 4.1 is

objdescr =
∑

v∈V
S′

d (v,Φ(v)) · Av, (4.8)

and its gradient

∇ objdescr =






∇d (v0,Φ(v0)) · Av0
...

∇d (vn−1,Φ(vn−1)) · Avn−1




 ∈ R2n. (4.9)

The objective objdescr now is a piecewise linear, i.e. C0 continuous, function in the

variables of x. This means that its gradient is constant per face, but discontinuous

across the edges of T. Working with a discontinuous gradient requires special

handling in the gradient descent algorithm, which is explained in Section 4.3.2.

4.2.2 Map Distortion

Recall that the distortion of the map Φ is measured in terms of its Jacobian JΦ =
J−1
g · Jφ · Jf . The individual Jacobians Jf , Jg and Jφ can be directly computed

per face: consider vertex positions a = (a0, a1)
T , b = (b0, b1)

T and c = (c0, c1)
T

being mapped to a′ = (a′0, a
′
1)

T , b′ = (b′0, b
′
1)

T , c′ = (c′0, c
′
1)

T by either f , g or φ.

In the case of φ, all points are expressed in a global 2D coordinate system. For f

and g, the points a, b and c are defined in a local coordinate system per face of

the respective mesh. We pick the point a as its origin and choose the basis vectors

eu = b−a
‖b−a‖

and ev = n× eu.
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For each of the maps, the Jacobian

J is constant per face and is repre-

sented by the 2 × 2 matrix mapping

vectors to vectors. Due to its linear-

ity, it is uniquely defined if two vectors

and their images are given. For this,

we choose the edge vectors b−a and

c−a which are mapped to b′−a′ and c′−a′ (see inset for the case of Jf ). Per

triangle we can now compute the Jacobian as:

J

[
b0 − a0 c0 − a0
b1 − a1 c1 − a1

]

︸ ︷︷ ︸

M

=

[
b′0 − a′0 c′0 − a′0
b′1 − a′1 c′1 − a′1

]

︸ ︷︷ ︸

M ′

J = M ′ ·M−1

When composing the eventual Jacobian JΦ, the matrices Jf and Jφ can simply

be multiplied. J−1
g however poses an additional problem. While Jf and Jφ are

defined per triangle in S, the Jacobian J−1
g is defined per triangle in T. Due to this

incompatibility, we cannot evaluate JΦ per face in S′. Computing it for a single

point in S′ however is always possible: Jf and Jφ are defined by the face the point

lies in and a triangle lookup with respect to the target mesh tells us which J−1
g to

use. This way, we can evaluate JΦ = J−1
g · Jφ · Jf per point in S′. Note that it

is still piecewise constant, however not in the triangulation of S′ or T′ but in the

intersection of both meshes in parameter space.

We refer to the entries of JΦ as

JΦ =
[
∂Φ
∂u

∂Φ
∂v

]

=

[
J00 J01

J10 J11

]

.

Now, for a single triangle t = (abc) in S′, we express the least-squares conformal

maps term with respect to its corner vertex a as:

lscmΦ(abc) =

∥
∥
∥
∥

∂Φ

∂v
− Rot90

∂Φ

∂u

∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
J01 + J10

J11 − J00

]∥
∥
∥
∥

2

= (J01 + J10)
2 + (J11 − J00)

2.
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Then, to form its gradient, we derive lscmΦ(abc) with

respect to the location of the triangle corner a′ in parameter

space. In other words, we answer the question: how do we

have to move the point a′ = φ(f(a)) in order to maximally

increase the distortion. The result is a vector ∂
∂a′

lscmΦ ∈
R

2 for each triangle corner in S′ (see inset).

Furthermore, we answer the same question for all cor-

ners in S \ S′, yielding vectors ∂
∂a′

lscmφ ∈ R2. For simplicity, we refer to either

of them by ∇ lscm. The derivation of ∇ lscm can be found in Appendix A.

Finally, we take a look at the total discrete distortion energy expressed as a sum

over all triangle corners a:

objlscm =
1

3

∑

a∈S′

∑

(b,c)∈N(a)

lscm(abc) · Aabc. (4.10)

The term is divided by 3 because each triangle is enumerated three times. In

this notation, it can be seen that each vertex is influenced by the distortion of its

incident triangles. This makes it straightforward to derive the gradient of objlscm:

∇ objlscm =
1

3









∑

(b,c)∈N(a0)

∇ lscm(a0bc) · Aa0bc

...
∑

(b,c)∈N(an−1)

∇ lscm(an−1bc) · Aan−1bc









∈ R2n. (4.11)

Unfortunately the discrete distortion energy exhibits C0 discontinuities in the vari-

ables of x. This is due to the piecewise constant discretization of J−1
g and is dis-

cussed in more detail in Section 4.3.2.

4.2.3 Local Injectivity

Deriving the barrier function in Equation 4.3 is somewhat simpler, as it is inde-

pendent of the maps f and g and thus avoids discretization artifacts. The discrete

version of objflip is:

objflip =
∑

v∈S

max
(
0,− log (detJφ/sf )
︸ ︷︷ ︸

=:B

)
· Av (4.12)

To find its gradient we again consider a variable triangle corner a and fixed corners

b and c. As before, the 2D gradient vector ∇ flip(abc) = ∂
∂a′

objflip tells us how to

move the variable vertex a′ to increase the barrier term as quickly as possible.
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Using ∇ flip(abc), which is derived in Appendix B, the gradient of the entire

function objflip with respect to the variable vector x is then:

∇ objflip =
1

3









∑

(b,c)∈N(a0)

∇ flip(a0bc) · Aa0bc

...
∑

(b,c)∈N(an−1)

∇ flip(an−1bc) · Aan−1bc









∈ R2n. (4.13)

The objective objflip is C0 continuous within the feasible region. Its gradient

has discontinuities at points where the support of a barrier starts, i.e. wherever

detJφ/sf = 1 in a triangle. Otherwise, both the function and its gradient are

smooth.

We skip the discretization of the convexity barrier 4.4, as well as the overlap

barrier 4.5, since they only serve experimental purposes and are not part of the

final optimization target.

Initialization Objective

The alternative descriptor objective objinit is discretized analogously to objdescr:
For each vertex v ∈ S, the matching score with respect to the vertices of the

intersecting target triangle is computed and then linearly interpolated. Hence, the

discrete version of Equation 4.7 is:

objinit =
∑

v∈S

scoreΦ(v) · Av (4.14)

Since our initialization method will not require derivatives, we do not have to

evaluate its gradient.

Finally, we are equipped with all individual functions and derivatives to solve the

optimization problem. These can now be composed into the eventual objective

function:

obj = αd · objdescr + αl · objlscm + αf · objflip . (4.15)

Analogously, its gradient is:

∇ obj = αd · ∇ objdescr + αl · ∇ objlscm + αf · ∇ objflip . (4.16)

The weights for each term are discussed during the evaluation in Section 4.4.
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4.3 Optimization

The variable vector x ∈ R2n in our optimization problem is a discrete sampling

of the continuous map φ. It is the concatenation of all vertex positions (u, v)T of

S in the plane after the deformation. Finding a good assignment to x is split into

two steps: First, an initial rigid transformation is found using a randomized ap-

proach. This phase seeks to maximize the alternative descriptor objective objinit.
After that, a gradient descent based method is employed to find a close-by local

minimum of the non-linear, non-convex function obj.

4.3.1 Initialization

As stated above, a rigid 2D transformation φ will serve as initialization. This

transformation has three continuous degrees of freedom, namely a rotation θ and

a 2D translation t = (t0, t1)
T . We restrict t0 and t1 to the range [−2, 2] to include

all possible translations with non-empty overlap.

Furthermore, it is beneficial for our application if the inter-surface map sup-

ports reflections. This makes it possible to, for example, map a left human eye to

a right one. Since there is no mechanism allowing reflections during the follow-

ing optimization, this additional binary degree of freedom has to be completely

resolved during the initialization phase.

Due to the low-dimensional and bounded solution space {0, 1} × [0, 2π) ×
[−2, 2]× [−2, 2], a very simple brute force approach is practical.

Random Sampling

We draw k random samples (r, θ, t0, t1) from this space, evaluate objinit for each

one, and keep the solution with the highest matching score. Probabilities for each

of the four dimensions are distributed as follows:

One half of the samples receive a reflection across an arbitrarily rotated axis.

Note, that an implementation using oriented meshes (e.g. a half-edge data struc-

ture) requires flipping the orientation of elements. The rotation θ is sampled with

uniform probability. As we are more interested in solutions with high overlap, the

translation t follows a normal distribution centered around the origin. Its param-

eter σ is chosen as 1, such that a sufficiently high sampling probability (≈ 5%) is

still available at the boundary of the range.

Unless stated otherwise, k = 10 000 is chosen for all our experiments. Further-

more, objinit is evaluated in parallel and a constant seed is used for reproducibility.
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The initializations obtained this way appear to be sufficiently good starting points

for a gradient descent. More thought-out initialization methods could be subject

to future work.

4.3.2 Non-Linear Optimization

The objective we seek to minimize is a non-linear, non-convex function. Given

an initial solution, such problems are commonly optimized by Newton methods.

These use a quadratic approximation around the current point x to determine a

descent direction in each iteration. Known for their fast convergence, Newton

methods require the Hessian matrix of the objective in each step.

For now, we avoid the effort of computing the Hessian by retreating to a gra-

dient descent method, trading the second-order approximation of obj for a linear

one. This ease usually comes at the cost of slow convergence. Nonetheless, for our

experiments, we choose simplicity over speed and leave performance improve-

ments for future work (see Section 5.1.3). In addition, only parts of our objective

function would benefit from a second-order method, as objdescr is a piecewise lin-

ear function, i.e. its Hessian is 0. Moreover, the nature of obj will pose additional

challenges, which can be sufficiently demonstrated without the added complexity

of second derivatives.

Gradient Descent

Given a continuously differentiable (C1) function f and an initial solution x0, the

gradient descent method iteratively converges to a close-by local minimum x∗. In

each iteration the method takes a step into the direction of the negative gradient,

as this is the direction minimizing a first-order approximation of f (cf. [BV04]):

xk+1 = xk − λk · ∇f(xk).

The parameter λk > 0 controls the step size and is independently chosen in each

iteration after computing the gradient. Given a fixed direction, ∇f , the problem

of finding the best step size is a one-dimensional problem in λ. Instead of exactly

determining the optimal λ one usually settles with a step size providing some de-

crease in the objective value. One can argue that the effort for finding the optimal

λ in each step can instead be invested into updating the search direction more

often.

A very popular and simple approach to find a step size with sufficient im-

provement is a backtracking line search. Starting from an initial large value,

the step size is decreased exponentially until a criterion is fulfilled. The com-

monly used Armijo-Goldstein condition checks whether the actual improvement



4.3. Optimization 53

is within a factor of the expected improvement considering the first-order approx-

imation of f :

f(xk)− f(xk+1)
︸ ︷︷ ︸

actual improvment

≥ α · λk ·
∥
∥∇f(xk)

∥
∥
2

︸ ︷︷ ︸

expected improvement

.

If this criterion is fulfilled, λ is accepted. Otherwise it is decreased by a factor

β, i.e. λ := β · λ. Due to the continuity of ∇f , this condition can always be

satisfied for a sufficiently small λ. The parameters are usually chosen within

α ∈ (0, 0.5), β ∈ (0, 1).
We use an initial λ in each iteration that has an interpretation in our optimiza-

tion domain R2. Namely, λ is chosen such that the longest 2D update vector of

a point (u, v)T is scaled down to the mean edge length of g(T ). If the longest

update vector is already shorter, λ = 1 is used.

Challenges

There are several challenges arising from our current formulation of obj, which

prevent this method from being immediately successful. First of all, the precondi-

tion for the objective function, i.e. being continuously differentiable, is violated:

(1) since the descriptor distance fields are piecewise linear, ∇ objdescr is piecewise

constant, i.e. C1 discontinuous. (2) The least-squares conformal map term is even

C0 discontinuous in our setting. (3) Beyond that, there are cases in which the

backtracking line search gets stuck in the proximity of barriers.

In the following, those three issues will be discussed in detail. It is shown

how to circumvent (1) by handling two simple special cases. In contrast to that,

(2) poses more severe problems which are worked around by a crude heuristic,

succeeding in some cases. Finally, (3) can be tempered by parameter adjustments,

and proper handling is left for future work.

First-Order Discontinuities

In this section objdescr is analyzed and its problems are handled in isolation, i.e.

all other terms of the objective are temporarily disabled. Recall that for a single

vertex v ∈ S, the objective describes the scalar field of descriptor distances to po-

tential correspondences in T. This can be intuitively visualized in the parameter

domain. When moving around the image of v, i.e. φ(v), in R2, the descriptor dis-

tance to the underlying point in the parametrization of T changes. These distances

can be imagined as a height field over g(T). A perfect correspondence for v has

height 0 and regions with bad matches form high “mountains”. While the height

field stays fixed, v can move freely and we expect it to to descent into a close-by

“valley” (as long as all other energies are disabled).
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Figure 4.5: For a single vertex in S, its de-

scriptor distance to the target disk can be vi-

sualized as a piecewise linear height field.

In our discretization however, this

height field is piecewise linear (see

Figure 4.5). This means that the ver-

tices of g(T) receive a certain height,

which is linearly interpolated over its

planar triangles. The first consequence

of this is that local minima are always

obtained at vertices of g(T). Exclud-

ing the case where two adjacent ver-

tices have the same height and a local

minimum extends along their common

edge, we thus expect all source ver-

tices to exactly move to a target vertex.

Another consequence of the piecewise linear height field is that its gradient

is constant per triangle. In particular, it does not approach the zero vector at a

local minimum. Imagine the source vertex v lying exactly over a minimizing tar-

get vertex w. Now v is arbitrarily assigned to one of the incident target triangles

and receives the gradient of this triangle, pointing towards w. Since v is already

in its optimal location and any movement would increase the objective, the back-

tracking line search will shrink the global step size λ infinitely. Consequently, the

optimization gets stuck at this point although other source vertices might not be

in their optimal location yet. Note that this deadlock might not immediately occur

if only a few vertices are converged: due to the global nature of the objective, it is

still possible that a large improvement at some other vertices compensates the set-

back of an already converged vertex. If this is the case, the supposedly converged

vertex v often jitters around its optimal location. When however a majority of

vertices converged, the optimization gets stuck.

A similar problem occurs if v is located at an edge of g(T) with gradients of

the incident triangles pointing towards the edge. Depending on the slope of the

edge, this leads to extreme oscillation of v or another deadlock.

Both problems however can be solved by handling them

as special cases and adjusting the gradient accordingly: If

φ(v) is within distance ε of a vertex w in g(T) the vertex

case is used. If this does not apply and φ(v) is within dis-

tance ε to an edge, the edge case is employed. Otherwise,

the gradient for v is computed as before, which we refer to

as the triangle case.

• Edge Case: To compute the gradient of source vertex v lying on a target

edge (a, b), we also consider the opposite target vertices l and r (see inset).

If the minimum height among a, b, l, r is obtained at either a or b, the prob-
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lematic situation can occur. However, it is clear that the maximum decrease

in objdescr is obtained by moving φ(v) along the edge (a, b). Thus we com-

pute the descriptor gradient with respect to the edge instead of a triangle:

∇d(v,Φ(v)) =
e

‖e‖
︸︷︷︸

direction

·
d(v, b)− d(v, a)

‖e‖
︸ ︷︷ ︸

magnitude

,

where e = g(b)− g(a) is the edge vector in R2. This prevents oscillation if

the edge exhibits some slope in the height field. If d(v, a) = d(v, b), i.e. no

slope, the gradient is the zero vector and thus does not provoke a deadlock.

In contrast, if the minimum height among a, b, l, r is obtained at l or r, the

vertex should not move parallel to the edge and we apply the triangle case

with respect the triangle of l or r, depending on which value is lower.

• Vertex Case: When the source vertex v is located very close to a target

vertex w, and w is a local minimum, we simply set ∇d(v, w) = 0. This

fixes the vertex sufficiently close to its desired position and prevents the

deadlock, as it does not impact the line search anymore. If any neighbor of

w has a lower height, we assign v to the corresponding edge and apply the

edge case, as this gives the maximal decrease in objdescr.

Using these two special cases, optimizing solely for objdescr using the gradient

descent method explained above works as expected. Source vertices approach

their minimizing target vertices within an error of ε and only stay inside a triangle

or on an edge if the local minimum is not unique. Of course the so-obtained

solution exhibits extreme distortion an numerous triangle flips. Therefore in the

next paragraph, objlscm is investigated more closely.

Zero-Order Discontinuities

While we can now handle piecewise linear objective functions, the conformal

distortion term objlscm adds more difficult problems. In contrast to objdescr it

is piecewise quadratic and not only C1 discontinuous but also C0 discontinuous

across the edges of g(T).
At first, this might be surprising, since the original least-squares conformal

maps energy, used for surface parametrization, is a convex quadratic function. In

our setting however, this energy is based on the composition of Jacobians JΦ =
J−1
g · Jφ · Jf . For a single vertex v, the matrix Jf is constant because it solely

depends on f , which does not change. Jφ changes continuously as φ(v) is moved

around in the plane. Thus, just considering these two terms, objlscm is a quadratic

function as expected. The Jacobian g−1 however is constant per triangle in g(T)
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Figure 4.6: Two neighboring triangles in g(T) have different Jacobians Jg = ( 1 0
0 3 )

(left) and Jg = ( 1 0
0 1 ) (right). The height field shows the conformality term lscm(abc)

with respect to the position of a source triangle corner a. The field is discontinuous across

the edge and exhibits an undesired local minimum. The negative conformality gradient

with respect to a is indicated by a bold arrow.

and jumps when φ(v) crosses an edge of the target mesh. As a result, objlscm is a

convex quadratic function in each target triangle but discontinuous across edges.

Unfortunately, these discontinuities introduce numerous undesired local min-

ima and force the line search to fail. In the example of Figure 4.6, a line search

along the depicted gradient direction is likely to back-off from the “cliff” in the

height field. In our experiments, the optimization always stops within the first few

gradient descent iterations.

Encouraged by the observation that the gradient ∇ objlscm often roughly points

into the desired direction, we employ the following crude modification of the al-

gorithm: Instead of choosing a step size using backtracking line search, we simply

perform steps of a small but fixed length into the negative gradient direction. This

way, discontinuities in the objective function are simply jumped over. Only if a

step would cross a barrier, its length is shrunk, using the same exponential back-

off as before, until the resulting point xk+1 is back inside the feasible region.

The scaling parameter λ is chosen similarly to the initial value for the back-

tracking line search above. Namely such that the longest update vector of a vertex

in R2 is scaled down to a factor λ̄ of the mean edge length of g(T). If the longest

update vector is already shorter that the desired length, it is not scaled up.
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Depending on the nature of g, this blunt approach works more or less well.

Another indication that the heuristic might be reasonable is the following: If g it-

self is conformal, the effect of J−1
g on the gradient vector as depicted in Figure 4.6

is just a scaling (see Equations A.1, A.2 and A.3 in Appendix A). If this is the

case, the gradient vector will only jump discontinuously in its length but not in

its direction when crossing the edge. As a result, walking small steps into this

direction should move the solution towards the desired local minimum. The less

conformal g is, the less this assumption holds.

Another problem, that is worked around by this heuristic, constitutes in ver-

tices entering or leaving the overlapping region. Both objdescr and objlscm behave

discontinuously in this case. For example, objdescr jumps from zero to a positive

value when a vertex enters the overlap. In our approach, these discontinuities are

simply walked over, giving a (temporary) increase in the objective value.

Evidently, our heuristic has several obvious disadvantages. First of all, the

already slow convergence rate of the gradient descent is further decreased, as we

have to choose an extreamly conservative step size. Secondly, the approach is

no longer a descent method, since the fixed step size might overshoot the desired

location and instead increase the total objective. In fact, we observe extreme os-

cillation in both the objective value and the gradient direction (demonstrated later

in Figure 4.8). Moreover, the gradient does not approach zero length upon “con-

vergence”. Instead, the solution tends to oscillate around a local minimum. For

this reason we experiment with an alternative stopping criterion: We keep track

of the accumulated update of the last m iterations and stop if this smoothed-out

vector falls below a length threshold. Finally, all guarantees known for gradient

descent methods are lost. Whether the stopping criterion is reached or whether

the obtained result is anywhere close to a local minimum is purely heuristic.

Nonetheless, we obtain good results in a set of examples. Despite being far

from ideal, this approach allows us to investigate the overall behavior of our prob-

lem formulation and sufficiently evaluate other aspects. Finding a more solid

optimization method for this kind of objective function or, more desirable, a re-

formulation without the discussed problems could be an important aspect of future

work.

Optimization Trapped at Barriers

Another issue emerges from the barrier functions with which we restrict the fea-

sible region of the problem. Recall that we use a negative logarithm that rapidly

increases if a triangle degenerates and is about to flip. In our experiments, the op-

timization sometimes stops in an almost degenerated configuration although the

desired local minimum is clearly not reached.
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Imagine a situation in which the current optimization variable is a point very

close to the boundary of the feasible region. This means that a triangle threatens to

flip, in which case a barrier function would approach infinity. Further, imagine a

strong gradient vector, of e.g. the descriptor objective, crossing the barrier. Since

this update is not allowed, an exponential back-off is performed until the updated

point lies within the feasible region. If the current point is very close to the bound-

ary, the step size might have to be shrunk extremely. To escape this situation, the

gradient vector of the barrier function is supposed to push the point away from

the boundary. However, due to the nature of the logarithm, this gradient is rather

weak until the point is extremely close to the barrier. In other words, there is only

a very tiny range near the boundary in which the barrier gradient is strong enough

to push a point away from it. Because the backtracking algorithm performs dis-

crete steps, it is possible to miss this range. As a result, it happens that the point

stays in its approximate location and the exponential back-off shrinks the step size

to a value close to zero in each of the following iterations. Depending on the tes-

sellation of the source mesh, this situation occurs quite often in our experiments

and usually the optimization does not recover from it within a reasonable number

of iterations.

Such issues in the presence of barrier functions frequently appear in the lit-

erature. For example, [MW94] mention that “a premature move too close to

the boundary can lead to a long sequence of iterates ‘trapped’ near the singu-

larity”. Consequently, they develop more elaborate line search strategies. Among

many others, the authors of [CMI09] also state that simple approaches to back-off

from barriers do not guarantee convergence, and they propose another line search

method.

How likely this issue is to occur in our setting, is influenced by the weight

αf . This parameter scales the values of the barrier function and thus also scales

its gradient. Therefore, increasing αf can ease the problem, as it strengthens the

force pushing points away from the barrier.

A popular family of algorithms to robustly optimize problems with barrier

functions are interior point methods (cf. [Ter13]). These solve a sequence of

problems: Starting with a high factor αf a solution is found using a standard (e.g.

Newton) method. After convergence, αf is iteratively decreased and the solution

is updated using the same method in each step. Considering barrier functions

that are not truncated as in our case, but have infinite support, the solution of the

first problem is expected to be far away from all barriers, i.e. in the interior of

the feasible region. In each of the following problems, the weight of the barrier

terms decreases and the solution can move closer to the boundary. The sequence

of solutions obtained this way is called the central path.

Unfortunately, an interior point method is not directly applicable to our for-

mulation of the problem. For example, the simple approach explained above is
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designed for convex optimization and assumes that a unique minimum exists for

each value of αf [BV04]. This however is not given in our case. Moreover, using

a very high αf and barrier functions with non-local support, the source disk will

grow infinitely in R2. This is why we use truncated functions in the first place.

Within the scope of this thesis, successful experiments are conducted by man-

ually adjusting the factor αf and the truncation point sf . Overcoming these issues

however should be an important aspect of future work (see Section 5.1.3).

In conclusion, this section shows a first approach towards optimizing obj. For sim-

plicity, a gradient method without seconds derivatives is used. Three challenges

are understood an discussed in detail. Although our approach cannot robustly

solve all problem instances yet, it provides data for the following evaluation.

4.4 Evaluation

This final section of the chapter gives an experimental evaluation of the approach

introduced so far. It will, on the one hand, show successful applications of the

method and, on the other hand, discuss its current shortcomings.

We applied our mapping technique to pairs of patches within the same class of

the datset described in Section 3.3. The resulting inter-surface maps are visualized

by transferring a set of polygonal lines from the source to the target patch. These

lines represent prescribed directions or feature lines of a macro constraint.

Figure 4.7 shows snapshots of the optimization process in both the surface

and the parameter domain. Eventually, the lines defined on the source patch are

successfully mapped to geometrically similar locations on the target patch under

low distortion.

Parameter Choice

The parameters of our method are tuned experimentally to achieve the best results.

In fact, the method is sensitive to these parameters and can fail if they are chosen

carelessly.

First, the initial transformation is found by sampling k = 10 000 random so-

lutions, unless stated otherwise. In the following, we fix the weight of the de-

scriptor objective to αd = 1. Thereon, in most cases a good balance is achieved

by weighting the conformalitiy term with αc = 10. In some experiments this

value is adjusted to avoid certain local minima. Choosing the factor αf for the

anti-flip barrier term is a delicate issue as explained in Section 4.3.2. While in

Figure 4.7 a value of αf = 10 suffices, the optimization gets stuck and does not
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Figure 4.7: A set of polygonal lines is transferred from the source patch (green, far left)

to the target patch (blue). A rigid alignment in parameter space is found by sampling

500 random transformations (mid left). The non-linear deformation of the source disk,

together with the resulting constraint mapping, is shown after 2 000 (mid right) and 15 000
iterations (far right).
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Figure 4.8: Due to our optimization heuristic, the objective value is subject to strong

oscillation. This plot shows the individual parts of the objective function over the course

of the example in Figure 4.7. While the descriptor objective decreases close to monoton-

ically, the conformal distortion behaves less stable and, in addition, passes multiple local

minima. The local injectivity term poses only a mild influence on the total objective and

is not witnessed to take extreme values.
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escape the situation in other examples. The problem can be diminished by choos-

ing αf = 10 000. The starting point of the barrier’s support is set to sf = 0.5 in

all experiments.

Furthermore, the step size of the gradient method is chosen by λ̄ = 0.05. This

means that the distance by which a vertex can move in R2 is limited to 0.05 times

the mean edge length. Although leading to slow convergence, this small value

is necessary to suppress too extreme oscillation of the objective value as well as

a large number of back-off iterations from barriers. Due to the still remarkably

strong oscillation of the objective value, we fail to detect convergence by both

traditional measures and the stopping criterion proposed in Section 4.3.2. Instead,

we perform a fixed number of up to 15 000 iterations each example.

Descriptor Choice

Figure 4.9: The same point on the

tip of the index finger is picked

in two examples. Using the mean

curvature descriptor (top row) and

the wave kernel signature (bot-

tom row), descriptor distances are

shown as a heat map. While the

nearest neighbor with respect to

mean curvature is highly ambigu-

ous and located on the wrong finger,

the wave kernel signatures yields

the correct correspondence.

We obtained the best results by simply choos-

ing the mean curvature at σ = 0.1 as our de-

scriptor, and keep this choice for all examples

presented here. Maybe surprisingly, results did

neither improve by choosing more complicated

combinations of different curvature types, nor

by using the wave kernel signature.

An important property of a descriptor field

for the success of our method is its smooth-

ness. If the descriptor reflects too much high-

frequency detail, the optimization quickly gets

stuck in a local minimum. The mean curva-

ture at a relatively large integration kernel of

σ = 0.1 shows to fulfill this smoothness re-

quirement, while smaller values do not. A dis-

advantage of this descriptor is its poor discrim-

ination due to being almost strictly local. E.g.

each fingertip of a human hand exhibits similar

descriptor values and the optimization depends

on a high-quality initialization (see Figure 4.9,

top). In contrast, the wave kernel signature is

able to distinguish between the individual fin-

gertips (see see Figure 4.9, bottom). However

its gradient field lacks sufficient smoothness to

properly guide the optimization.
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Figure 4.10: Each row shows a source patch (green), equipped with a set of polygonal

lines. Using our method, the lines are mapped to three different target patches each (blue).

The resulting mappings contain reflections (row 1 and 2), minor scale difference (e.g. row

1, column 2) and slightly misaligned patch centers (row 3, column 3).
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Figure 4.11: The model of a human head is equipped with four distinct macro constraints.

At six positions, a point and a geodesic radius is picked, defining a target patch (blue). Our

re-embedding method is then employed to transfer polygonal lines from one of the source

patches (green). For both eyes and ears, the same source patch is applied twice, yielding

symmetric constraint sets. Finally, the mapped lines are used as guiding constraints for

[CBK15], producing the quad mesh on the right.

Using the settings and descriptor choice explained so far, the constraint re-embedding

results in Figure 4.10 are obtained. Figure 4.11 shows a quad mesh guided by di-

rection constraints transferred from multiple source patches.

Continuity and Injectivity

Using our technique to transfer lines between surfaces demonstrates its power only

partially. In contrast to many point matching methods, we compute a map that is

(1) densely available at each point of the overlapping region, (2) C0 continuous,

and (3) guaranteed to be locally injective everywhere. It thus can be used to

transfer any kind of field between two surface regions, as long as this field can be

linearly interpolated. For the particular use case of macro constraints, this allows

to also transfer singularity configurations as well as local sizing information in

form of a scalar or metric field. In Figure 4.12 this property is demonstrated by

mapping texture coordinates from the source to the target mesh.
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Figure 4.12: Our method computes a continuous mapping establishing a dense field of

high-quality point-to-point correspondences. It can be used to injectively map various

kinds of fields between the surface regions. Here, the source patch (left) is textured us-

ing its initial disk parametrization and the texture coordinates are transferred to the target

(right) using our inter-surface map. Note how details in both meshes are textured corre-

spondingly despite geometric differences. Regions in which the map is not available are

colored in gray on the target mesh.

Isotropic and Anisotropic Scaling

Since conformality was chosen as our distortion measure, certain types of maps

are favored by our method. A conformal map allows for an isotropic scaling

per point, however not for an anisotropic one. The practical effects of this are

discussed at two examples.

In the first example, the recovery from a synthetically stretched initialization

is observed (see Figure 4.13). Here, the initial source parametrization is scaled

by a factor of 2 along a single axis. It can be seen, that in a first phase (iteration

0 to 1 000) the conformality term is dominant and deforms the anisotropic map

back into an isotropic one. In a second phase (iteration 1 000 to 10 000) the source

mesh is scaled down uniformly to achieve better descriptor distances.
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Figure 4.13: From an artificially stretched initialization, we observe that our method first

restores isotropy of the map and then applies a uniform down-scaling to obtain better

descriptor matches. The deformation is shown at iterations 0, 1 000 and 10 000.

The second example (Figure 4.14) shows two patches, both containing an ear

but including differently large mesh regions around it. Since both patches are

normalized to a geodesic radius of 1, the ear in the source patch is slightly smaller

than its target counterpart. As an effect, the transferred constraints only cover

the upper part of the ear in the initial solution. During the following iterations,

this difference in scale is accommodated for in a roughly uniform manner. Since

however the target ear is also higher then the source, an anisotropc scaling would

be required for a the desired result. This however is only provided by our method

up to a certain extend.

Furthermore, the least-squares conformal maps energy, which we use as an ap-

proximation to conformality, is commonly known to favor shrinkage in the target

domain. This is because the deviation from conformality is measured by a 2D

vector which shrinks if the map is a down-scaling. In our experiments we do not

observe this behavior as the descriptor objective provides a strong regularization.

In contrast, slight growth can be noticed close to the boundary of the overlapping

region. This is provoked by two factors: (1) the descriptor objective can only push

vertices out of the overlap but cannot pull them back inside, and (2) conformality

as an objective tends to “blow up” boundaries of a convex shape.

Runtime Complexity

The execution time of a single iteration is primarily dominated by the 2D triangle

lookup for each vertex of the source mesh. Assuming a uniform distribution of

target vertices in the parameter domain, the uniform gird acceleration structure

(see Section 4.2) allows for constant-time lookups. If this is not given, falling
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Figure 4.14: Both ears show different relative sizes within their patches. While isotropic

scaling is handled gracefully by our method, anisotropic scaling is only possible to a

certain extend. The magenta colored dot symbolizes a desired correspondence which is

not fully reached. The results at iterations 0, 2 000 and 10 000 (“converged”) are shown.

back to a quad tree or BSP tree gives a logarithmic lookup time. Given the target

triangle for each source vertex, the computation of both the objective function as

well as its gradient are relatively inexpensive. Note that these are purely local,

i.e. each source triangle corner can be processed by just considering its other two

vertices and its corresponding target triangle. No extended neighborhoods have

to be taken into account. In total, each fixed-step iteration has linear or log-linear

runtime in the number of source vertices. If an exponential back-off or a line

search is performed, the costly lookup has to be repeated in each step.

Due to our crude optimization heuristic, an extremely large number of itera-

tions has to be performed. Frequent back-offs from barriers slow down the op-

timization even further. Consequently, the performance is far from being inter-

active. In our unoptimized implementation, the examples shown here took up to

three minutes to compute. Possible improvements are addressed in Section 5.1.3.

Descriptor Magnitude Mismatch

An inherent problem of descriptor distance minimization as an optimization target

can be observed in Figure 4.15. Here, our one-dimensional curvature descriptor

is visualized as a heat map. The eyebrow in both patches can easily be identified

by its high curvature. However, the curvature takes slightly higher values in the



4.4. Evaluation 67

Figure 4.15: The scalar mean curvature descriptor is shown as a heat map. Note the

difference in magnitude at the eyebrow of the source (top left) and the target (top right)

patch. Disabling our distortion measure, i.e. setting αc = 0, reveals the effects of this

mismatch problem. In the deformed source disk (bottom center), an entire area long the

eyebrow degenerates to a line.

source patch than in the target patch. Clearly, we expect our algorithm to be robust

with respect to these small geometric changes as such situations present its main

use case.

When only considering the descriptor objective and switching off the distor-

tion measure, the following issue is revealed: since each variable vertex of the

source mesh tries to minimize its descriptor distance, entire regions in the source

mesh find their best match at peaks of the target descriptor. Thus, parts of the

mesh try to degenerate to a point or a line.

Consequently, in these cases, the descriptor term is in ongoing conflict with

the distortion term, which prevents the degeneration. This is a reason why the

distortion measure has to receive a high weight in most examples and represents

more than just a slight regularization.

Patch Tessellation

Experiments show that our current implementation is sensitive to the mesh tes-

sellation. All positive results presented here are computed on relatively coarse
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meshes of up to 1600 vertices (face class) and 700 vertices (other classes). Choos-

ing a finer resolution has the following effects: (1) small triangles in the source

patch threaten to flip more easily, which increases the number back-off steps and

provokes the issue of getting stuck at barriers. (2) Short edge lengths in the target

mesh enforce a smaller gradient step length and thus require more iterations. (3)

More triangles in the target mesh also increase the number of discontinuities in the

objective function and emphasize the problems of the current formulation. In fact,

we could not produce comparable results with significantly finer tessellations. The

issue is further addressed in the future work Chapter 5.1.

High Curvature Patches

If the geometry of a patch exhibits extreme Gaussian curvature, a highly distorted

disk parametrization is inevitable. Although our approach is intended to be as

agnostic as possible to the metric induced by the initial maps f and g, some

problems remain. Depending on the type of distortion in f and g, one of the

following situations occurs:

First, high area distortion significantly decreases the quality of an initializa-

tion via rigid alignment. Due to shrinkage in parameter space, small distances

in R2 correspond to large geodesic distances in the surface domain, magnifying

slight misalignments. Furthermore, in the presence of high distortion, we observe

considerable differences in the the initial parametrizations of both patches which

cannot be compensated by a rigid transformation. As a result of a bad initializa-

tion, it becomes likely that the desired local optimum is not found.

Second, it is possible to reduce the area distortion of e.g. an harmonic parame-

trization at the cost of higher conformal distortion. However, assuming a uniform

tessellation of both patches in the surface domain, this enforces extremely thin

triangles in the parameter domain. As a consequence, the entire optimization pro-

cess takes place in close proximity to the boundary of the feasible region, because

thin triangles threaten to flip easily. This provokes extreme numbers of back-off

iterations and accentuates the problem of getting stuck at barriers.

Indeed, these problems do not permit successful results on both the hand and

foot classes of our dataset. Overcoming these issues is an important aspect of

future work (see Section 5.1.3).

In this main part of the thesis, a descriptor guided approach towards comput-

ing partial inter-surface mappings between two topological disks was presented.

Challenges in finding a suitable problem formulation were discussed in detail. De-

spite remaining issues of the current formulation, promising results can already be

achieved in a range of examples.
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Conclusion

This work tackled two sub problems of an envisioned constraint recommendation

system for interactive quad meshing sessions. First, the task of patch retrieval in

a given database was approached. As various techniques for the general problem

of shape retrieval exist, a bag-of-features approach could be successfully adapted

to our specialized setting. An evaluation on a small dataset revealed satisfactory

results given the simplicity of the method.

After that, the intricate problem of both detecting matching regions of two

surface patches and computing a mapping between them was approached. For-

mulating the problem in a 2D parametrization setting and minimizing descriptor

distances as well as conformal distortion results in a non-convex optimization

problem. Our proposed attempt to solve the problem yields detailed insight into

its core challenges. A thorough understanding of these challenges gives rise to

future work.

Implementation

As part of this thesis, the bag-of-features retrieval (Chapter 3) was implemented

in MATLAB. The proposed mapping algorithm (Chapter 4) was implemented in

C++ using the OpenMesh data structure [BSBK02] and the OpenFlipper frame-

work [MK12]. Existing implementations were used for principal curvature com-

putation as well as for quad mesh generation [BZK09], [CBK15]. The wave kernel

signature was also computed using the original MATLAB implementation pub-

lished by the authors [ASC11].

69
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5.1 Future Work

Potential topics for future work arising from this thesis can be divided into three

fields: (1) working towards an interactive constraint suggestion system from an

application perspective, (2) evaluating more elaborate retrieval methods in our

context, and (3) further pursuing descriptor-guided mappings between surfaces.

5.1.1 An Interactive Constraint Suggestion System

At the heart of the system sketched here, there has to be a powerful database of

surface patches equipped with artist-chosen constraints. The data acquisition for

such a project carries an entire field of challenges on its own. First, a sufficiently

large number of meshes needs to be constrained by skilled artists. The search for

suitable demonstration meshes itself already proved to be of little success. Com-

monly used datasets to showcase quad meshing algorithms (e.g. [MPZ14]) either

contain too exotic meshes, providing no additional value, or show little variety

within a class of models. Shape collections, as used in global shape retrieval and

mapping tasks (e.g. [BBC+10]), usually exhibit a low level of detail and thus often

lose their value when restricted to small regions. In general, it is still unclear, how

much inter-class variation should be permitted to create an effective recommen-

dation system.

Second, supporting patches around macro constraints have to be extracted.

Even when performing this task manually, it is often unclear how to choose a suit-

able region around a constraint. One the one hand, such a region has to carry

enough discriminating geometry to assure that no unrelated or undesired con-

straint sets are proposed. On the other hand, a region has to be local enough

to still allow for flexible re-use. In addition, an artist’s constraint, e.g. a polygonal

line, might cover large parts of a mesh, rendering it inherently non-local. In this

context, our restriction of patches being geodesic discs without handles is clearly

a limiting factor. Automatic extraction of such patches is expected to be difficult,

as the expected result is often unclear.

Both aspects, collecting an adequate amount of data and extracting useful

patches, seem to require new ideas before the proposed system can be turned into

a practically useful tool.

Another aspect, omitted in this work, is to define meaningful user interactions.

A system actually assisting artists has to be simple to use and, maybe even more

importantly, its proposed results have to be easy to modify. Thus, three important

questions for the design of a user interface should be: (1) How to efficiently select

query regions on the target mesh? (2) How to present a preview of one or multiple



5.1. Future Work 71

retrieved macro constraints? (3) How to allow manual post processing of the re-

embedded constraint set?

As seen in this thesis, implementing such a system comes with enormous chal-

lenges in both content and algorithmic aspects. Moreover, it is not yet studied to

which extent the system would be valued by users. In its current draft, it has the

potential to save small parts of manual work or provide inspiration, but bears the

danger of suggesting suboptimal or undesired solutions. Thus, as a precondition

to further pursuing this direction, the general effectiveness of the sketched system

should be evaluated thoroughly.

5.1.2 Patch Retrieval

A well known drawback of a bag-of-features approach, as employed here, is its

lack of spatial sensitivity. In our situation this shortcoming is particularly empha-

sized: spectral descriptors, usually carrying a certain amount on non-local infor-

mation, cannot play on their strength when restricted to local surface patches.

Thus, a possible direction for future work could be to experiment with some

of the many existing spatial extensions of the bag-of-features model. In parallel

to this, other families of retrieval methods could be tailored to our setting and

evaluated as well.

More generally, various descriptors could be analyzed with respect to their per-

formance in locally restricted regions. In particular, an interesting question is how

descriptor values computed solely on a surface patch compare to those computed

on the entire shape. While this analysis is straightforward for simple curvature

based descriptors, it is more involved in the case of spectral descriptors. E.g.

[RCB+15] already provides helpful insights by showing how cutting away parts

of a mesh changes the eigenfunctions of its Laplacian.

5.1.3 Partial Inter-Surface Mappings Between Disks

The most challenging aspect of this work is finding a high-quality partial map-

ping between two patches. Although the general approach presented here seems

promising, it could not be turned into a robust algorithm within the scope of this

thesis. In the following, multiple ways to finalize the method are proposed.

Reformulation of the Objective Function

An inherent problem of our current formulation is that optimizing for low descrip-

tor distances and optimizing for large overlap are conflicting concepts. The situ-

ation was partially solved by introducing an alternative objective function. This
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turns the descriptor distance measure into a similarity measure and thus naturally

combines both concepts. Yet, it is only used for initialization as it has no means of

penalizing distortion. Adding a distortion penalty brings back the original conflict,

i.e. fewer correspondences imply less distortion. A possible idea is to also invert

the distortion measure such that non-existing overlap is ignored, high-distortion

overlap is tolerated, and low-distortion overlap is rewarded. This inversion how-

ever is expected to impose a different characteristic on the behavior of distortion,

which is worth investigation. In case of positive results, three problems might be

solved: (1) initialization and non-linear optimization work on the same objective

function, (2) balancing between large overlap and other objectives is abandoned

entirely, and (3) discontinuities with respect to vertices entering and leaving the

overlap disappear.

An even more severe problem of the current objective is the way distortion mea-

sures are discretized with respect to the composition of three maps. Recall that

the Jacobian of the map from the parameter domain to the target surface is con-

stant per face. This is due to the piecewise linearity of the mapping and eventually

causes C0 discontinuities in the objective, preventing well-defined optimization

techniques. Since the problematic third map does not change, it could be slightly

modified to smooth out discontinuities. For example, it is conceivable to average

the Jacobian in each one-ring at its center vertex and from there on linearly inter-

polate it back over the triangles. This modification does not cause any changes

when considered in the limit of infinitesimally fine tessellation and yields a C0

continuous distortion measure.

Still, the resulting distortion objective is not expected to be a convex function,

due to the metric induced by the disk parametrization of each patch. It would be

interesting to better understand the non-convexity of this function with respect to

both disk parametrizations. This could give further insights in how to effectively

optimize for it while avoiding local minima.

Finally, the distortion measure employed here (least-squares conformal maps),

was mainly chosen due to its simplicity. Since our optimization is inevitably non-

linear anyway, a variety of other distortion measures is available. How the choice

of distortion measure influences the non-convexities or the scale inversion, men-

tioned above, is still unclear.

Efficient Optimization

Considering the interactive application purpose for our mapping technique, real-

time performance is a requirement. Thus, more efficient ways to solve the non-

linear problem have to be investigated.
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Given a C0 continuous objective function, as described above, we can aban-

don our optimization heuristic and pick from a number of general purpose op-

timization methods. Gradient descent with backtracking line search, as initially

pursued, is expected to yield a significantly lower number of iterations as well as

proper convergence.

The cost of a line search is dominated by the 2D triangle lookup. Considering

a piecewise linear objective, an alternative to this lookup is tracing through the

target mesh: a given descent direction consists of a 2D ray for each variable vertex.

Instead of picking different positions along these rays by backtracking, they could

be explored in a forward fashion, i.e. each time a ray intersects an edge of the

target mesh, the objective function is updated.

Since C1 discontinuities are still inherently present in both the descriptor and

the distortion objective, Newton methods cannot easily be applied. Still, the en-

tire family of quasi-Newton methods is available and can be evaluated for perfor-

mance improvements. These algorithms do not require an explicit Hessian, but

successively compute an approximation by considering a sequence of the latest

gradient vectors. Alternatively, turning the objective into a least-squares energy

allows to apply the Levenberg–Marquardt algorithm. This method can be seen as

a smooth interpolation between Gauss-Newton and gradient descent steps.

Hierarchical Approaches

Our method calls for an hierarchical approach in two ways. First, the 2D defor-

mation could be computed in a coarse-to-fine manner to improve run time perfor-

mance. A possible technique would be to start by decimating the source mesh and

then letting the optimization converge. After that, the decimation can successively

be reverted, while the optimization continues after each step. In addition, the deci-

mation could be performed sensitively to the attached descriptor field. This means

that vertices are preferably removed in areas of nearly constant descriptor value.

More generally, re-meshing both patches, such that they match specified qual-

ity criteria and then transferring the resulting mapping from the re-meshed to the

original mesh, can also be considered.

Second, high-frequency descriptor fields are likely to cause plenty of unde-

sired local minima in the objective function. An idea worth pursuing is to smooth

the descriptor fields and consequently the objective function. In this setting, a

coarse-to-fine approach could start the optimization on very smooth fields, al-

lowing the source parametrization to roughly slide into the right location. In the

following, the smoothing can be reverted successively, updating the solution after

each step.

Last, in case both concepts prove to be practical on their own, a combination

of them is desirable.



74 Chapter 5. Conclusion

Improved Initial Parametrization

For a majority of our experiments, harmonic parametrizations with mean value

weights were used as initialization. However, these cause issues due to their high

area distortion and better solutions are likely to be found.

Moreover, properties of these parametrizations are not exploited by our method

yet. In particular, it is of interest if an interleaved optimization schemes exist,

which in turn optimizes one of the three maps involved. Whether such a setting

could avoid having to optimize the composition of all three maps at once is im-

portant for the choice of future research directions.

Finally, the randomized approach for finding the initial rigid transformation

could be replaced by more reliable methods.

Extension to Non-Disk Topologies

If a robust method for the current setting can be found, it is interesting to see

if our method can be extended to compute mappings between shapes of higher

genus. This involves cutting the mesh and optimizing in the presence of charts

and transition functions. A series of papers operating in such a setting exists

([APL14], [APL15], [AL15]), yet it has to be examined how their insights can be

applied to our setting.

5.2 Summary

In this thesis, an envisioned constraint suggestion system for parametrization based

quad meshing was sketched. By specifying a region of interest on a target mesh,

a potential user can query a database for a similar region, on which a set of con-

straints is already defined. These constraints can then be transferred to the target

mesh, where they are used as an input to existing quad meshing methods. The

particular contribution of this work is two-fold:

First, a bag-of-features model was adapted to this specific situation. While

an evaluation already provides good results, future work might target improved

spatial sensitivity as well as a more thorough understanding of the behavior of

spectral descriptors on isolated surface patches.

Second, a descriptor-guided method for the computation of partial inter-surface

maps between disks was presented. The inherently two-dimensional nature of the

task is exploited by formulating the problem in a parametrization setting. Sev-

eral aspects of the problem formulation as well as optimization strategies were

discussed in detail. In the evaluation, first positive results could be demonstrated.

Finally, a thorough understanding of the remaining challenges was used to identify

specific tasks for future research.
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Appendix A

Least-Squares Conformal Maps

Gradient

In this appendix, we derive the gradient of the least-squares conformal maps en-

ergy of the concatenated map Φ = g−1 ◦ φ ◦ f . In particular, the gradient is

formed for each source triangle (abc) with respect to the location of a single tri-

angle corner a′ = φ(f(a)) in parameter space.

Recall that the Jacobian of the map Jφ is computed as:

Jφ

[
b0 − a0 c0 − a0
b1 − a1 c1 − a1

]

︸ ︷︷ ︸

M

=

[
b′0 − a′0 c′0 − a′0
b′1 − a′1 c′1 − a′1

]

︸ ︷︷ ︸

M ′

Jφ = M ′ ·M−1.

Here, a = (a0, a1)
T , b = (b0, b1)

T and c = (c0, c1)
T denote the positions of trian-

gle corners before φ is applied, whereas a′,b′, c′ are their respective images under

φ. Further, note that the energy we want to derive depends on the composition of

Jacobians JΦ = J−1
g · Jφ · Jf . We refer to the entries of JΦ as

JΦ =
[
∂Φ
∂u

∂Φ
∂v

]

=

[
J00 J01

J10 J11

]

.

Now, for a single triangle t = (abc) in S′, we express the least-squares conformal

maps term as:

lscmΦ(abc) =

∥
∥
∥
∥

∂Φ

∂v
− Rot90

∂Φ

∂u

∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
J01 + J10

J11 − J00

]∥
∥
∥
∥

2

= (J01 + J10)
2 + (J11 − J00)

2.
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To form its gradient, we derive lscmΦ(abc) with respect to the location of the tri-

angle corner a in parameter space. This location a′ = φ(f(a)) ∈ R2 corresponds

to two variables in the unknown vector x. We start the derivation top-down, by

applying the chain rule to lscmΦ :

∂

∂a′
lscmΦ = 2 · (J01 + J10) · (

∂

∂a′
J01 +

∂

∂a′
J10)

+ 2 · (J11 − J00) · (
∂

∂a′
J11 −

∂

∂a′
J00) ∈ R2.

(A.1)

To find derivatives for the individual entries J••, we use the decomposition JΦ =
J−1
g · Jφ · Jf . Assuming Jf and J−1

g constant, we have:

∂

∂a′
JΦ = J−1

g ·
∂

∂a′
Jφ · Jf .

Furthermore using Jφ = M ′ ·M−1, where M−1 is constant, gives:

∂

∂a′
Jφ =

∂

∂a′
M ′ · M−1.

Recalling that

M ′ =

[
b′0 − a′0 c′0 − a′0
b′1 − a′1 c′1 − a′1

]

and M−1 =
1

detM

[
c1 − a1 a0 − c0
a1 − b1 b0 − a0

]

,

we have

∂

∂a′0
M ′ =

[
−1 −1
0 0

]

and
∂

∂a′1
M ′ =

[
0 0
−1 −1

]

,

which finally leads to

∂

∂a′0
JΦ =

1

detM
· J−1

g ·

[
b1 − c1 c0 − b0

0 0

]

· Jf ∈ R2×2 (A.2)

and

∂

∂a′1
JΦ =

1

detM
· J−1

g ·

[
0 0

c0 − b0 b1 − c1

]

· Jf ∈ R2×2. (A.3)

Now let ∂
∂a′

J•• be the R2 vector having the entries
(

∂
∂a′

0

JΦ

)

••
and

(
∂

∂a′
1

JΦ

)

••
as its components. These vectors can be plugged into Equation A.1, yielding a

gradient vector ∂
∂a′

lscmΦ in R2. This vector tells us in which direction a′ has to

be moved to maximally increase the distortion within a single triangle.

Forming the gradient of lscmφ in S \S′ works in exactly the same way except

for Jf and J−1
g being the identity.

We will write ∇ lscm(abc) for either lscmΦ(abc) or lscmφ(abc) depending on

whether the triangle lies within the overlapping region or not.
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Injectivity Barrier Gradient

Deriving the barrier function in Equation 4.3 is somewhat simpler, as it is inde-

pendent of the maps f and g and thus avoids many discretization artifacts. The

discrete version of objflip is:

objflip =
∑

v∈S

max
(
0,− log (detJφ/sf )
︸ ︷︷ ︸

=:B

)
· Av (B.1)

To find its gradient, we again consider a variable triangle corner a and fixed cor-

ners b and c. As before, a, b, c denote the original 2D positions of vertices from

S and a′, b′, c′ their images under φ. The 2D gradient vector ∇ flip(abc) =
∂
∂a′

objflip tells us how to move the variable vertex a′ to increase the barrier term

as quickly as possible. Using the definitions of M and M ′ from above, the barrier

can be rewritten as:

B(a′) = − log
(
detJφ/sf

)

= − log
(
det(M ′ ·M−1)/sf

)

= − log

(
detM ′

sf · detM−1

)

= − log
(
detM ′

)
+ log

(
sf · detM

−1
)

︸ ︷︷ ︸

const

.

Its derivative with respect to the position a′ is then

∂

∂a′
B = −

1

detM ′
·
∂

∂a′
det M ′ ∈ R2,
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with

∂

∂a′
detM ′ =

∂

∂a′

(
(b′0 − a′0)(c

′
1 − a′1)− (b′1 − a′1)(c

′
0 − a′0)

)

=
∂

∂a′

(
b′0c

′
1 − b′0a

′
1 − a′0c

′
1 − b′1c

′
0 + b′1a

′
0 + a′1c

′
0

)

=

[
b′1 − c′1
c′0 − b′0

]

.

Considering, that we clip negative function values to 0, the gradient for a single

triangle corner is:

∇ flip =







− 1
detM ′

·

[

b′1 − c′1
c′0 − b′0

]

detJφ/sf ≤ 1

[

0

0

]

detJφ/sf > 1.

In total, the gradient of objflip with respect to the variable vector x is then:

∇ objflip =
1

3









∑

(b,c)∈N(a0)

∇ flip(a0bc) · Aa0bc

...
∑

(b,c)∈N(an−1)

∇ flip(an−1bc) · Aan−1bc









∈ R2n. (B.2)
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